bayesDccGarch-package

bayesDccGARCH: Methods and tools for Bayesian analysis of DCC-GARCH(1,1) Model.

Description

In this package we implemented functions for Bayesian analysis of DCC-GARCH(1,1) Model using the same modelling of Fioruci et al (2014a). Several probabilities distributions are available for the errors which can model both skewness and heavy tails. See Fioruci et al (2014b) for more details about the package.

Details

<table>
<thead>
<tr>
<th>Package</th>
<th>bayesDccGarch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Package</td>
</tr>
<tr>
<td>Version</td>
<td>2.2</td>
</tr>
<tr>
<td>Date</td>
<td>2021-04-01</td>
</tr>
<tr>
<td>License</td>
<td>GPL (>=2.14)</td>
</tr>
</tbody>
</table>

bayesDccGarch(mY, n_sim = 10000)

Author(s)

Jose Augusto Fiorucci, Ricardo Sandes Ehlers and Francisco Louzada. Maintainer: Jose Augusto Fiorucci <jafiorucci@gmail.com>

References

See Also

Available functions: bayesDccGarch, logLikDccGarch, dssnorm, dsst, dssged, plot, plotVol

Examples

data(DaxCacNik)

out = bayesDccGarch(DaxCacNik)
bayesDccGarch

Bayesian Estimation of the DCC-GARCH(1,1) Model.

Description

Performs a Markov Chain for all parameters of the DCC-GARCH(1,1) Model.

Usage

bayesDccGarch(mY, nSim = 10000, tail_ini = 8, omega_ini = rep(0.03, ncol(mY)),
 alpha_ini = rep(0.04, ncol(mY)), beta_ini = rep(0.8, ncol(mY)),
 a_ini = 0.04, b_ini = 0.8, gamma_ini = rep(1, ncol(mY)),
 errorDist = 2, control = list())

increaseSim(x, nSim=10000)

S3 method for class 'bayesDccGarch'
window(x, start = NULL, end = NULL, thin = NULL, ...)

Arguments

mY a matrix of the data (n x k).
nSim length of Markov chain. Default: 10000.
tail_ini initial value of \(\nu \) parameter if errorDist = 2 or initial value of \(\delta \) parameter if errorDist = 3. If errorDist = 1 this arguments is not used.
omega_ini a numeric vector (k x 1) with the initial values of \(\omega_i \) parameters. Default: rep(0.03,ncol(mY)).
alpha_ini a numeric vector (k x 1) with the initial values of \(\alpha_i \) parameters. Default: rep(0.03,ncol(mY)).
beta_ini a numeric vector (k x 1) with the initial values of \(\beta_i \) parameters. Default: rep(0.8,ncol(mY)).
a_ini a numeric value of the initial values of a parameter. Default: 0.03.
b_ini a numeric value of the initial values of b parameter. Default: 0.8.
gamma_ini a numeric vector (k x 1) with the initial values of \(\gamma_i \) parameters. Default: rep(1.0,ncol(mY)).
bayesDccGarch

errorDist a probability distribution for errors. Use errorDist=1 for SSNorm, errorDist=2 for SST or errorDist=3 for SSGED. Default: 2.
control list of control arguments (See *Details*).
x an object of bayesDccGarch class.
start the first iteration of interest from Markov chain.
end the last iteration of interest from Markov chain.
thin the required interval between successive samples.
... additional arguments for S3 generic window function

Details

The bayesDccGarch() function performs a Markov Chain for all parameters of the model DCC-GARCH(1,1) (or GARCH(1,1) in the univariate case). There are three options of probability distributions for the error component. These are the standardized skew versions of normal, t-student and ged distributions. See Fioruci et al (2014a) and Fioruci et al (2014b) for any detail. The control argument can be used for define the prior hyper-parameters and the simulation algorithm parameters. It is a list that can supply any of the following components:

$mu_tail the value of hyper-parameter mu_ν if errorDist=2 or the hyper-parameter mu_δ if errorDist=3. Default: 8
$mu_gamma a vector with the hyper-parameters mu_{γ_i}. Default: rep(0,ncol(mY))
$mu_omega a vector with the hyper-parameters mu_{ω_i}. Default: rep(0,ncol(mY))
$mu_alpha a vector with the hyper-parameters mu_{α_i}. Default: rep(0,ncol(mY))
$mu_beta a vector with the hyper-parameters mu_{β_i}. Default: rep(0,ncol(mY))
$mu_a the value of the hyper-parameter mu_a. Default: 0
$mu_b the value of the hyper-parameter mu_b. Default: 0
$sigma_tail the value of hyper-parameter $sigma_\nu$ if errorDist=2 or the hyper-parameter $sigma_\delta$ if errorDist=3. Default: 10
$sigma_gamma a vector with the hyper-parameters $sigma_{\gamma_i}$. Default: rep(1.25,ncol(mY))
$sigma_omega a vector with the hyper-parameters $sigma_{\omega_i}$. Default: rep(10,ncol(mY))
$sigma_alpha a vector with the hyper-parameters $sigma_{\alpha_i}$. Default: rep(10,ncol(mY))
$sigma_beta a vector with the hyper-parameters $sigma_{\beta_i}$. Default: rep(10,ncol(mY))
$sigma_a the value of the hyper-parameter $sigma_a$. Default: 10
$sigma_b the value of the hyper-parameter $sigma_b$. Default: 10
$simAlg the random walk Metropolis-Hasting algorithm update. Use 1 for update all parameters as one block, use 2 for update one parameter for each time and use 3 for an automatic choice.
$nPilotSim number of simulation for pilot sample if control$simAlg=3. Default:1000
$cholCov the cholesky decomposition matrix of the covariance matrix for simulation by one-block Metropolis-Hasting. It must to be passed if control$simAlg=1.
$sdSim a vector with the standard deviations for simulation by one-dimensional Metropolis-Hasting. It must to be passed if control$simAlg=2.
$print$ a logical variable for if the function should report the number of interactions in each 100 interactions or not. Default: TRUE

The function `increaseSim()` can be used to increase the length of Markov chain simulation.

The function `window()` can be used to filter the Markov chain simulation. In this case, all statistics are recomputed.

Value

An object of `bayesDccGarch` class, which contains a list with elements:

- `$control$` a list with the used `control` argument.
- `MC` a element of `mcmc` class with the Markov Chain simulation of all parameters. (`R` package `coda`)
- `H` a matrix with the Bayesian estimates of volatilities and co-volatilities.
- `R` a matrix with the estimates of the dynamic conditional correlation.
- `H_n1` Bayesian prediction of volatilities and co-volatilities for y_n+1.
- `R_n1` Bayesian prediction of conditional correlation for y_n+1.
- `IC` the Bayesian estimate of Akaike Information Criterion, Bayesian Information Criterion and Deviance Information Criterion.
- `$elapsedTime$` an object of class `proc_time` which is a numeric vector of length 5, containing the user, system, and total elapsed times of the process.

Author(s)

Jose Augusto Fiorucci, Ricardo Sandes Ehlers and Francisco Louzada

References

See Also

`bayesDccGarch-package`, `logLikDccGarch`, `plot`, `plotVol`

Examples

data(DaxCacNik)

```r
### DCC-GARCH(1,1) ###
```
DaxCacNik

Log-returns of daily indices of stock markets in Frankfurt, Paris and Tokio

Description

The matrix DaxCacNik contains daily observations of the hundredfold log-returns of daily indices of stock markets in Frankfurt (DAX), Paris (CAC40) and Tokyo (NIKKEI), from 10 October 1991 until 30 December 1997 (a total of 1627 days). The stock market data is freely available at https://robjhyndman.com/tsdldata/data/FVD1.dat.

Usage

data(DaxCacNik)

Author(s)

Jose Augusto Fiorucci, Ricardo Sandes Ehlers and Francisco Louzada

References

densityFunctions

Density functions of multivariate Standard Skew Norm, t-Student and GED distributions

Description

Compute the density function of Standard Skew Normal distribution (SSNORM) or density function of Standard Skew t-Student distribution (SST) or density function of Standard Skew GED distribution (SSGED)

Usage

```r
dssnorm(x, gamma=rep(1,length(x)), log=FALSE)

dsst(x, gamma=rep(1,length(x)), nu=10, log=FALSE)

dssged(x, gamma=rep(1,length(x)), delta=2, log=FALSE)
```

Arguments

- `x`: a numeric vector for the point which the density will be computed.
- `gamma`: a numeric vector for skew parameters. Must be positive.
- `nu`: a numeric value of shape parameter of the multivariate Standard Skew t-Student distribution. Must be greater than 2.
- `delta`: a numeric value of shape parameter of GED distribution. Must be positive.
- `log`: logical; if TRUE, densities `p` are returned as `log(p)`.

Value

Returns the computed value of the density.

Author(s)

Jose Augusto Fiorucci, Ricardo Sandes Ehlers and Francisco Louzada

References

See Also

bayesDccGarch-package
Examples

Univariate symmetric standard norm distributions

dssnorm(x=0)
dsst(x=0, nu=100)
dssged(x=0, delta=2)

Univariate standard skew norm distributions

dssnorm(x=0, gamma=1.5)
dsst(x=0, gamma=1.5, nu=100)
dssged(x=0, gamma=1.5, delta=2)

Multivariate standard skew norm distributions

dssnorm(x=c(0,0), gamma=c(1.5,0.7))
dsst(x=c(0,0), gamma=c(1.5,0.7), nu=100)
dssged(x=c(0,0), gamma=c(1.5,0.7), delta=2)

logLikDccGarch

The logarithm of likelihood function of DCC-GARCH(1,1) Model.

Description

Compute the logarithm of likelihood function of DCC-GARCH(1,1) Model if \(\mathbf{mY} \) is a matrix or the logarithm of likelihood function of GARCH(1,1) Model if \(\mathbf{mY} \) is numeric vector.

Usage

```r
logLikDccGarch(mY, omega = rep(0.03, ncol(mY)), alpha = rep(0.03, ncol(mY)),
                beta = rep(0.8, ncol(mY)), a = 0.03, b = 0.8, gamma = rep(1, ncol(mY)),
                tail = 10, errorDist = 2)
```

Arguments

- `mY` a matrix of the data \((n \times k)\).
- `omega` a numeric vector \((k \times 1)\) with the the values of \(\omega_i\) parameters. Default: `rep(0.03, ncol(mY))`.
- `alpha` a numeric vector \((k \times 1)\) with the the values of \(\alpha_i\) parameters. Default: `rep(0.03, ncol(mY))`.
- `beta` a numeric vector \((k \times 1)\) with the the values of \(\beta_i\) parameters. Default: `rep(0.80, ncol(mY))`.
- `a` a numeric value of the \(a\) parameter. Default: 0.03.
- `b` a numeric value of the \(b\) parameter. Default: 0.8.
- `gamma` a numeric vector \((k \times 1)\) with the values of \(\gamma_i\) parameters. Default: `rep(1.0, ncol(mY))`.
- `tail` a numeric value of \(\nu\) parameter if `errorDist = 2` or of \(\delta\) parameter if `errorDist = 3`. If `errorDist = 1` so this arguments is no used.
- `errorDist` a probability distribution for errors. Use `errorDist=1` for `SSNorm`, `errorDist=2` for `SST` or `errorDist=3` for `SSGED`. Default: 2.
logLikDccGarch

Details

The log-likelihood of the model GARCH(1,1) is computed if mY has just one column. The arguments a and b are not considered in this case.

Value

Return a list with the elements:

H a matrix where the lines are the H_t values for $t=1,...,n$.
$value$ the value of the logarithm of the likelihood function.

Author(s)

Jose Augusto Fiorucci, Ricardo Sandes Ehlers and Francisco Louzada

References

See Also

`bayesDccGarch-package`, `bayesDccGarch`

Examples

data(DaxCacNik)
Dax = DaxCacNik[,1]

log-likelihood function of GARCH(1,1) model with SST innovations
logLikDccGarch(Dax, omega=0.03, alpha=0.03, beta=0.8, gamma=0.7)$value

log-likelihood function of DCC-GARCH(1,1) model with SST innovations
logLikDccGarch(DaxCacNik, beta=c(0.82,0.91,0.85), gamma=c(0.7, 1.3, 1.7), tail=10)$value
plot.bayesDccGarch

Plotting volatilities for Bayesian DCC-GARCH model

Description

Produces a plot of time series and the volatilities. This is a particular case of plotVol function.

Usage

```r
## S3 method for class 'bayesDccGarch'
plot(x, ts.names=NULL, colors = c("grey","red"), ...)
```

Arguments

- `x` Object of class “bayesDccGarch”.
- `ts.names` a vector of length \(k \) with the names of the time series.
- `colors` a vector with the colors for plotting the returns and volatilities.
- `...` additional arguments for `plot` function

Value

No return value

Author(s)

Ricardo Sandes Ehlers, Jose Augusto Fiorucci and Francisco Louzada

References

See Also

bayesDccGarch-package, bayesDccGarch, plotVol
Examples

data(DaxCacNik)
mY = DaxCacNik[1:10,] # more data is necessary
out = bayesDccGarch(mY, nSim=1000)
plot(out)

plotVol

Plotting volatilities of time series

Description

Plotting method for volatilities of time series.

Usage

plotVol(mY, vol, ts.names=paste("TS_", 1:ncol(mY), sep=""), colors = c("grey","red"), ...)

Arguments

mY | a matrix of the data \((n \times k)\).
vol | a matrix \((n \times k)\) with the volatility estimates.
ts.names | a vector of length \(k\) with the names of the time series.
colors | a vector with name of the colors for plotting the returns and volatilities.
... | additional arguments for plot function

Value

No return value

Author(s)

Ricardo Sandes Ehlers, Jose Augusto Fiorucci and Francisco Louzada

References

See Also

bayesDccGarch-package, bayesDccGarch, plot.bayesDccGarch

Examples

data(DaxCacNik)

mY = DaxCacNik[1:10,] # more data is necessary

out = bayesDccGarch(mY, nSim=1000)

The code
plotVol(mY, out$H[,c("H_1,1","H_2,2","H_3,3")], c("DAX","CAC40","NIKKEI"))

gives the result of
plot(out)
Index

* Bayes
 bayesDccGarch-package, 2

* DCC-GARCH
 bayesDccGarch-package, 2
 logLikDccGarch, 8

* GARCH
 bayesDccGarch-package, 2
 logLikDccGarch, 8

* datasets
 DaxCacNik, 6

* dcc-garch
 bayesDccGarch, 3

* density-function
 densityFunctions, 7

* distribution
 densityFunctions, 7

* garch
 bayesDccGarch, 3

* models
 bayesDccGarch, 3

* multivariate-distribution
 densityFunctions, 7

* multivariate
 bayesDccGarch, 3
 bayesDccGarch-package, 2

* package
 bayesDccGarch-package, 2

* plot
 plot.bayesDccGarch, 10
 plotVol, 11

* skew-distribution
 densityFunctions, 7

* ts
 bayesDccGarch, 3

* volatility
 plot.bayesDccGarch, 10
 plotVol, 11

DaxCacNik, 6
densityFunctions, 7
dssged, 2
dssged (densityFunctions), 7
dssnorm, 2
dssnorm (densityFunctions), 7
dsst, 2
dsst (densityFunctions), 7
increaseSim (bayesDccGarch), 3

logLikDccGarch, 2, 5, 8
plot, 2, 5
plot (plot.bayesDccGarch), 10
plot.bayesDccGarch, 10, 12
plotVol, 2, 5, 10, 11

window (bayesDccGarch), 3

bayesDccGarch, 2, 3, 9, 10, 12
bayesDccGarch-package, 2