
Package ‘misty’
April 29, 2022

Type Package

Title Miscellaneous Functions 'T. Yanagida'

Version 0.4.5

Date 2022-04-29

Author Takuya Yanagida [aut, cre]

Maintainer Takuya Yanagida <takuya.yanagida@univie.ac.at>

Description Miscellaneous functions for descriptive statistics (e.g., frequency table, cross tabula-
tion, multilevel descriptive statistics, multilevel R-squared measures, within-group and between-
group correlation matrix, various effect size measures), data management (e.g., grand-
mean and group-mean centering, recode variables and re-
verse code items, scale and group scores, reading and writing SPSS and Excel files), miss-
ing data (e.g., descriptive statistics for missing data, missing data pattern, Little's test of Miss-
ing Completely at Random, and auxiliary variable analysis), item analysis (e.g., coefficient al-
pha and omega, confirmatory factor analysis), and statistical analysis (e.g., confidence inter-
vals, collinearity diagnostics, Levene's test, t-test, z-test, sample size determination).

Depends R (>= 3.5.0)

License MIT + file LICENSE

Imports ggplot2, haven, lavaan, lme4, nlme, norm, r2mlm, readxl,
writexl

Suggests mnormt, plyr

Encoding UTF-8

NeedsCompilation no

Repository CRAN

Date/Publication 2022-04-29 20:30:01 UTC

R topics documented:
as.na . 3
center . 5
chr.gsub . 7
chr.omit . 8

1

2 R topics documented:

chr.trim . 9
ci.mean . 11
ci.mean.diff . 13
ci.median . 18
ci.prop . 20
ci.prop.diff . 23
ci.sd . 27
ci.var . 29
cluster.scores . 31
cohens.d . 33
collin.diag . 39
cor.cont . 42
cor.cramer . 44
cor.matrix . 45
cor.phi . 48
cor.poly . 50
crosstab . 51
descript . 53
df.duplicated . 56
df.merge . 58
df.rbind . 60
df.rename . 61
df.sort . 62
dummy.c . 64
eta.sq . 65
freq . 67
indirect . 69
item.alpha . 73
item.cfa . 76
item.omega . 83
item.reverse . 86
item.scores . 88
kurtosis . 90
multilevel.cor . 91
multilevel.descript . 95
multilevel.icc . 97
multilevel.indirect . 98
multilevel.r2 . 101
na.as . 109
na.auxiliary . 111
na.coverage . 112
na.descript . 113
na.indicator . 115
na.pattern . 116
na.prop . 117
na.test . 118
print.misty.object . 120
read.mplus . 122

as.na 3

read.sav . 123
read.xlsx . 125
rec . 127
run.mplus . 129
rwg.lindell . 131
size.cor . 133
size.mean . 134
size.prop . 136
skewness . 138
std.coef . 139
test.levene . 142
test.t . 143
test.welch . 148
test.z . 151
write.mplus . 155
write.result . 156
write.sav . 159
write.xlsx . 161

Index 164

as.na Replace User-Specified Values With Missing Values

Description

This function replaces user-specified values in the argument as.na in a vector, factor, matrix, data
frame or list with NA.

Usage

as.na(x, na, check = TRUE)

Arguments

x a vector, factor, matrix, data frame, or list.

check logical: if TRUE, argument specification is checked.

na a vector indicating values or characters to replace with NA.

Value

Returns x with values specified in na replaced with NA.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

4 as.na

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

na.as, na.auxiliary, na.coverage, na.descript, na.indicator, na.pattern, na.prop, na.test

Examples

#--------------------------------------
Numeric vector
x.num <- c(1, 3, 2, 4, 5)

Replace 2 with NA
as.na(x.num, na = 2)

Replace 2, 3, and 4 with NA
as.na(x.num, na = c(2, 3, 4))

#--------------------------------------
Character vector
x.chr <- c("a", "b", "c", "d", "e")

Replace "b" with NA
as.na(x.chr, na = "b")

Replace "b", "c", and "d" with NA
as.na(x.chr, na = c("b", "c", "d"))

#--------------------------------------
Factor
x.factor <- factor(c("a", "a", "b", "b", "c", "c"))

Replace "b" with NA
as.na(x.factor, na = "b")

Replace "b" and "c" with NA
as.na(x.factor, na = c("b", "c"))

#--------------------------------------
Matrix
x.mat <- matrix(1:20, ncol = 4)

Replace 8 with NA
as.na(x.mat, na = 8)

Replace 8, 14, and 20 with NA
as.na(x.mat, na = c(8, 14, 20))

#--------------------------------------
Data frame

center 5

x.df <- data.frame(x1 = c(1, 2, 3),
x2 = c(2, 1, 3),
x3 = c(3, 1, 2), stringsAsFactors = FALSE)

Replace 1 with NA
as.na(x.df, na = 1)

Replace 1 and 3 with NA
as.na(x.df, na = c(1, 3))

#--------------------------------------
List
x.list <- list(x1 = c(1, 2, 3, 1, 2, 3),

x2 = c(2, 1, 3, 2, 1),
x3 = c(3, 1, 2, 3))

Replace 1 with NA
as.na(x.list, na = 1)

center Centering at the Grand Mean or Centering Within Cluster

Description

This function is used to center predictors at the grand mean (CGM, i.e., grand mean centering) or
within cluster (CWC, i.e., group-mean centering).

Usage

center(x, type = c("CGM", "CWC"), cluster = NULL, value = NULL, as.na = NULL,
check = TRUE)

Arguments

x a numeric vector.

type a character string indicating the type of centering, i.e., "CGM" for centering at the
grand mean (i.e., grand mean centering) or "CWC" for centering within cluster
(i.e., group-mean centering).

cluster a vector representing the nested grouping structure (i.e., group or cluster vari-
able) of each unit in x. Note, this argument is required for centering at the
grand mean (CGM) of a level-2 predictor or centering within cluster (CWC) of
a level-1 predictor.

value a numeric value for centering on a specific user-defined value.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to x but not to cluster.

check logical: if TRUE, argument specification is checked.

6 center

Details

Predictors in a single-level regression can only be centered at the grand mean (CGM) by specifying
type = "CGM" (default) in conjunction with cluster = NULL (default).

Level-1 (L1) predictors in a multilevel regression can be centered at the grand mean (CGM) by
specifying type = "CGM" (default) in conjunction with cluster = NULL (default) or within cluster
(CWC) by specifying type = "CWC" in conjunction with specifying a cluster membership variable
using the cluster argument.

Level-2 (L2) predictors in a multilevel regression can only be centered at the grand mean (CGM)
by specifying type = "CGM" (default) in conjunction with specifying a cluster membership variable
using the cluster argument.

Note that predictors can be centered on any meaningful value using the argument value.

Value

Returns a numeric vector with the same length as x containing centered values.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Enders, C. K. (2013). Centering predictors and contextual effects. In M. A. Scott, J. S. Si-
monoff, & B. D. Marx (Eds.), The Sage handbook of multilevel modeling (pp. 89-109). Sage.
https://dx.doi.org/10.4135/9781446247600

Enders, C. K., & Tofighi, D. (2007). Centering predictor variables in cross-sectional multilevel
models: A new look at an old issue. Psychological Methods, 12, 121-138. https://doi.org/10.1037/1082-
989X.12.2.121

See Also

dummy.c, cluster.scores, rec, item.reverse, rwg.lindell, item.scores.

Examples

#--------------------------------------
Predictors in a single-level regression
dat.sl <- data.frame(x = c(4, 2, 5, 6, 3, 4, 1, 3, 4),

y = c(5, 3, 6, 3, 4, 5, 2, 6, 5))

Center predictor at the sample mean
center(dat.sl$x)

Center predictor at the value 3
center(dat.sl$x, value = 3)

#--------------------------------------
Predictors in a multilevel regression
dat.ml <- data.frame(id = c(1, 2, 3, 4, 5, 6, 7, 8, 9),

chr.gsub 7

cluster = c(1, 1, 1, 2, 2, 2, 3, 3, 3),
x.l1 = c(4, 2, 5, 6, 3, 4, 1, 3, 4),
x.l2 = c(4, 4, 4, 1, 1, 1, 3, 3, 3),
y = c(5, 3, 6, 3, 4, 5, 2, 6, 5))

Center level-1 predictor at the grand mean (CGM)
center(dat.ml$x.l1)

Center level-1 predictor within cluster (CWC)
center(dat.ml$x.l1, type = "CWC", cluster = dat.ml$cluster)

Center level-2 predictor at the grand mean (CGM)
center(dat.ml$x.l2, type = "CGM", cluster = dat.ml$cluster)

chr.gsub Multiple Pattern Matching And Replacements

Description

This function is a multiple global string replacement wrapper that allows access to multiple methods
of specifying matches and replacements.

Usage

chr.gsub(pattern, replacement, x, recycle = FALSE, ...)

Arguments

pattern a character vector with character strings to be matched.

replacement a character vector equal in length to pattern or of length one which are a re-
placement for matched patterns.

x a character vector where matches and replacements are sought.

recycle logical: if TRUE, replacement is recycled if lengths differ.

... additional arguments to pass to the regexpr or sub function.

Value

Return a character vector of the same length and with the same attributes as x (after possible coer-
cion to character).

Note

This function was adapted from the mgsub() function in the mgsub package by Mark Ewing (2019).

Author(s)

Mark Ewing

8 chr.omit

References

Mark Ewing (2019). mgsub: Safe, Multiple, Simultaneous String Substitution. R package version
1.7.1. https://CRAN.R-project.org/package=mgsub

See Also

chr.omit, chr.trim

Examples

string <- c("hey ho, let's go!")
chr.gsub(c("hey", "ho"), c("ho", "hey"), string)

string <- "they don't understand the value of what they seek."
chr.gsub(c("the", "they"), c("a", "we"), string)

string <- c("hey ho, let's go!")
chr.gsub(c("hey", "ho"), "yo", string, recycle = TRUE)

string <- "Dopazamine is not the same as dopachloride or dopastriamine, yet is still fake."
chr.gsub(c("[Dd]opa([^]*?mine)","fake"), c("Meta\\1","real"), string)

chr.omit Omit Strings

Description

This function omits user-specified values or strings from a numeric vector, character vector or factor.

Usage

chr.omit(x, omit = "", na.omit = FALSE, check = TRUE)

Arguments

x a numeric vector, character vector or factor.

omit a numeric vector or character vector indicating values or strings to be omitted
from the vector x, the default setting is the empty strings "".

na.omit logical: if TRUE, missing values (NA) are also omitted from the vector.

check logical: if TRUE, argument specification is checked.

Value

Returns a numeric vector, character vector or factor with values or strings specified in omit omitted
from the vector specified in x.

chr.trim 9

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

See Also

chr.gsub, chr.trim

Examples

#--------------------------------------
Charater vector
x.chr <- c("a", "", "c", NA, "", "d", "e", NA)

Omit character string ""
chr.omit(x.chr)

Omit character string "" and missing values (NA)
chr.omit(x.chr, na.omit = TRUE)

Omit character string "c" and "e"
chr.omit(x.chr, omit = c("c", "e"))

Omit character string "c", "e", and missing values (NA)
chr.omit(x.chr, omit = c("c", "e"), na.omit = TRUE)

#--------------------------------------
Numeric vector
x.num <- c(1, 2, NA, 3, 4, 5, NA)

Omit values 2 and 4
chr.omit(x.num, omit = c(2, 4))

Omit values 2, 4, and missing values (NA)
chr.omit(x.num, omit = c(2, 4), na.omit = TRUE)

#--------------------------------------
Factor
x.factor <- factor(letters[1:10])

Omit factor levels "a", "c", "e", and "g"
chr.omit(x.factor, omit = c("a", "c", "e", "g"))

chr.trim Trim Whitespace from String

Description

This function removes whitespace from start and/or end of a string

10 chr.trim

Usage

chr.trim(x, side = c("both", "left", "right"), check = TRUE)

Arguments

x a character vector.

side a character string indicating the side on which to remove whitespace, i.e., "both"
(default), "left" or "right".

check logical: if TRUE, argument specification is checked.

Value

Returns a character vector with whitespaces removed from the vector specified in x.

Note

This function is based on the str_trim() function from the stringr package by Hadley Wickham.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Wickham, H. (2019). stringr: Simple, consistent wrappers for common string operations. R pack-
age version 1.4.0. https://CRAN.R-project.org/package=stringr

See Also

chr.gsub, chr.omit

Examples

x <- " string "

Remove whitespace at both sides
chr.trim(x)

Remove whitespace at the left side
chr.trim(x, side = "left")

Remove whitespace at the right side
chr.trim(x, side = "right")

https://CRAN.R-project.org/package=stringr

ci.mean 11

ci.mean Confidence Interval for the Arithmetic Mean

Description

This function computes a confidence interval for the arithmetic mean with known or unknown
population standard deviation or population variance for one or more variables, optionally by a
grouping and/or split variable.

Usage

ci.mean(x, sigma = NULL, sigma2 = NULL,
alternative = c("two.sided", "less", "greater"), conf.level = 0.95,
group = NULL, split = NULL, sort.var = FALSE, na.omit = FALSE,
digits = 2, as.na = NULL, check = TRUE, output = TRUE)

Arguments

x a numeric vector, matrix or data frame with numeric variables, i.e., factors and
character variables are excluded from x before conducting the analysis.

sigma a numeric vector indicating the population standard deviation when computing
confidence intervals for the arithmetic mean with known standard deviation Note
that either argument sigma or argument sigma2 is specified and it is only possi-
ble to specify one value for the argument sigma even though multiple variables
are specified in x.

sigma2 a numeric vector indicating the population variance when computing confidence
intervals for the arithmetic mean with known variance. Note that either argument
sigma or argument sigma2 is specified and it is only possible to specify one
value for the argument sigma2 even though multiple variables are specified in
x.

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less".

conf.level a numeric value between 0 and 1 indicating the confidence level of the interval.

group a numeric vector, character vector or factor as grouping variable. Note that a
grouping variable can only be used when computing confidence intervals with
unknown population standard deviation and population variance.

split a numeric vector, character vector or factor as split variable. Note that a split
variable can ?nly be used when computing confidence intervals with unknown
population standard deviation and population variance.

sort.var logical: if TRUE, output table is sorted by variables when specifying group.

na.omit logical: if TRUE, incomplete cases are removed before conducting the analysis
(i.e., listwise deletion) when specifying more than one outcome variable.

digits an integer value indicating the number of decimal places to be used.

12 ci.mean

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to x, but not to group or split.

check logical: if TRUE, argument specification is checked.

output logical: if TRUE, output is shown on the console.

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, list with the input specified in x, group, and split (data), spec-
ification of function arguments (args), and result table (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
John Wiley & Sons.

See Also

test.z, test.t, ci.mean.diff, ci.median, ci.prop, ci.var, ci.sd, descript

Examples

dat <- data.frame(group1 = c(1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2),
group2 = c(1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2),
x1 = c(3, 1, 4, 2, 5, 3, 2, 4, NA, 4, 5, 3),
x2 = c(4, NA, 3, 6, 3, 7, 2, 7, 5, 1, 3, 6),
x3 = c(7, 8, 5, 6, 4, NA, 8, NA, 6, 5, 8, 6))

Two-Sided 95% Confidence Interval for x1
ci.mean(dat$x1)

Two-Sided 95% Confidence Interval with known standard deviation for x1
ci.mean(dat$x1, sigma = 1.2)

Two-Sided 95% Confidence Interval with known variance for x1
ci.mean(dat$x1, sigma2 = 2.5)

One-Sided 95% Confidence Interval for x1
ci.mean(dat$x1, alternative = "less")

Two-Sided 99% Confidence Interval
ci.mean(dat$x1, conf.level = 0.99)

Two-Sided 95% Confidence Interval, print results with 3 digits
ci.mean(dat$x1, digits = 3)

ci.mean.diff 13

Two-Sided 95% Confidence Interval for x1, convert value 4 to NA
ci.mean(dat$x1, as.na = 4)

Two-Sided 95% Confidence Interval for x1, x2, and x3,
listwise deletion for missing data
ci.mean(dat[, c("x1", "x2", "x3")], na.omit = TRUE)

Two-Sided 95% Confidence Interval for x1, x2, and x3,
analysis by group1 separately
ci.mean(dat[, c("x1", "x2", "x3")], group = dat$group1)

Two-Sided 95% Confidence Interval for x1, x2, and x3,
analysis by group1 separately, sort by variables
ci.mean(dat[, c("x1", "x2", "x3")], group = dat$group1, sort.var = TRUE)

Two-Sided 95% Confidence Interval for x1, x2, and x3,
split analysis by group1
ci.mean(dat[, c("x1", "x2", "x3")], split = dat$group1)

Two-Sided 95% Confidence Interval for x1, x2, and x3,
analysis by group1 separately, split analysis by group2
ci.mean(dat[, c("x1", "x2", "x3")], group = dat$group1, split = dat$group2)

ci.mean.diff Confidence Interval for the Difference in Arithmetic Means

Description

This function computes a confidence interval for the difference in arithmetic means in a two-sample
and paired-sample design samples with known or unknown population standard deviation or popu-
lation variance for one or more variables, optionally by a grouping and/or split variable.

Usage

ci.mean.diff(x, ...)

Default S3 method:
ci.mean.diff(x, y, sigma = NULL, sigma2 = NULL,

var.equal = FALSE, paired = FALSE,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95, group = NULL, split = NULL, sort.var = FALSE,
digits = 2, as.na = NULL, check = TRUE, output = TRUE, ...)

S3 method for class 'formula'
ci.mean.diff(formula, data, sigma = NULL, sigma2 = NULL,

var.equal = FALSE, alternative = c("two.sided", "less", "greater"),
conf.level = 0.95, group = NULL, split = NULL, sort.var = FALSE,
na.omit = FALSE, digits = 2, as.na = NULL, check = TRUE,
output = TRUE, ...)

14 ci.mean.diff

Arguments

x a numeric vector of data values.

y a numeric vector of data values.

sigma a numeric vector indicating the population standard deviation(s) when comput-
ing confidence intervals for the difference in arithmetic means with known stan-
dard deviation(s). In case of independent samples, equal standard deviation is
assumed when specifying one value for the argument sigma; when specifying
two values for the argument sigma, unequal variance is assumed Note that ei-
ther argument sigma or argument sigma2 is specified and it is only possible to
specify one value (i.e., equal variance assumption) or two values (i.e., unequal
variance assumption) for the argument sigma even though multiple variables are
specified in x.

sigma2 a numeric vector indicating the population variance(s) when computing confi-
dence intervals for the difference in arithmetic means with known variance(s).
In case of independent samples, equal variance is assumed when specifying one
value for the argument sigma2; when specifying two values for the argument
sigma, unequal variance is assumed. Note that either argument sigma or argu-
ment sigma2 is specified and it is only possible to specify one value (i.e., equal
variance assumption) or two values (i.e., unequal variance assumption) for the
argument sigma even though multiple variables are specified in x.

var.equal logical: if TRUE, the population variance in the independent samples are assumed
to be equal.

paired logical: if TRUE, confidence interval for the difference of arithmetic means in
paired samples is computed.

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less".

conf.level a numeric value between 0 and 1 indicating the confidence level of the interval.

group a numeric vector, character vector or factor as grouping variable. Note that a
grouping variable can only be used when computing confidence intervals with
unknown population standard deviation and population variance.

split a numeric vector, character vector or factor as split variable. Note that a split
variable can only be used when computing confidence intervals with unknown
population standard deviation and population variance.

sort.var logical: if TRUE, output table is sorted by variables when specifying group.

digits an integer value indicating the number of decimal places to be used.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to x, but not to group or split.

check logical: if TRUE, argument specification is checked.

output logical: if TRUE, output is shown on the console.

formula in case of a between-subject design (i.e., paired = FALSE), a formula of the form
y ~ group for one outcome variable or cbind(y1, y2, y3) ~ group for more
than one outcome variable where y is a numeric variable giving the data values

ci.mean.diff 15

and group a numeric variable, character variable or factor with two values or
factor levels given the corresponding groups; in case of a within-subject design
(i.e., paired = TRUE), a formula of the form post ~ pre where post and pre are
numeric variables. Note that analysis for more than one outcome variable is not
permitted in within-subject design.

data a matrix or data frame containing the variables in the formula formula.

na.omit logical: if TRUE, incomplete cases are removed before conducting the analysis
(i.e., listwise deletion) when specifying more than one outcome variable.

... further arguments to be passed to or from methods.

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis (type), list with the input specified in x, group, and split (data), specifi-
cation of function arguments (args), and result table (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
John Wiley & Sons.

See Also

ci.mean, ci.median, ci.prop, ci.var, ci.sd, descript

Examples

dat1 <- data.frame(group1 = c(1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2),

group2 = c(1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2,
1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2),

group3 = c(1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2,
1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2),

x1 = c(3, 1, 4, 2, 5, 3, 2, 3, 6, 4, 3, NA, 5, 3,
3, 2, 6, 3, 1, 4, 3, 5, 6, 7, 4, 3, 6, 4),

x2 = c(4, NA, 3, 6, 3, 7, 2, 7, 3, 3, 3, 1, 3, 6,
3, 5, 2, 6, 8, 3, 4, 5, 2, 1, 3, 1, 2, NA),

x3 = c(7, 8, 5, 6, 4, 2, 8, 3, 6, 1, 2, 5, 8, 6,
2, 5, 3, 1, 6, 4, 5, 5, 3, 6, 3, 2, 2, 4))

#--------------------------------------
Two-sample design

Two-Sided 95% CI for y1 by group1
unknown population variances, unequal variance assumption
ci.mean.diff(x1 ~ group1, data = dat1)

16 ci.mean.diff

Two-Sided 95% CI for y1 by group1
unknown population variances, equal variance assumption
ci.mean.diff(x1 ~ group1, data = dat1, var.equal = TRUE)

Two-Sided 95% CI with known standard deviations for x1 by group1
known population standard deviations, equal standard deviation assumption
ci.mean.diff(x1 ~ group1, data = dat1, sigma = 1.2)

Two-Sided 95% CI with known standard deviations for x1 by group1
known population standard deviations, unequal standard deviation assumption
ci.mean.diff(x1 ~ group1, data = dat1, sigma = c(1.5, 1.2))

Two-Sided 95% CI with known variance for x1 by group1
known population variances, equal variance assumption
ci.mean.diff(x1 ~ group1, data = dat1, sigma2 = 1.44)

Two-Sided 95% CI with known variance for x1 by group1
known population variances, unequal variance assumption
ci.mean.diff(x1 ~ group1, data = dat1, sigma2 = c(2.25, 1.44))

One-Sided 95% CI for y1 by group1
unknown population variances, unequal variance assumption
ci.mean.diff(x1 ~ group1, data = dat1, alternative = "less")

Two-Sided 99% CI for y1 by group1
unknown population variances, unequal variance assumption
ci.mean.diff(x1 ~ group1, data = dat1, conf.level = 0.99)

Two-Sided 95% CI for y1 by group1
unknown population variances, unequal variance assumption
print results with 3 digits
ci.mean.diff(x1 ~ group1, data = dat1, digits = 3)

Two-Sided 95% CI for y1 by group1
unknown population variances, unequal variance assumption
convert value 4 to NA
ci.mean.diff(x1 ~ group1, data = dat1, as.na = 4)

Two-Sided 95% CI for y1, y2, and y3 by group1
unknown population variances, unequal variance assumption
ci.mean.diff(cbind(x1, x2, x3) ~ group1, data = dat1)

Two-Sided 95% CI for y1, y2, and y3 by group1
unknown population variances, unequal variance assumption,
listwise deletion for missing data
ci.mean.diff(cbind(x1, x2, x3) ~ group1, data = dat1, na.omit = TRUE)

Two-Sided 95% CI for y1, y2, and y3 by group1
unknown population variances, unequal variance assumption,
analysis by group2 separately
ci.mean.diff(cbind(x1, x2, x3) ~ group1, data = dat1, group = dat1$group2)

ci.mean.diff 17

Two-Sided 95% CI for y1, y2, and y3 by group1
unknown population variances, unequal variance assumption,
analysis by group2 separately, sort by variables
ci.mean.diff(cbind(x1, x2, x3) ~ group1, data = dat1, group = dat1$group2,

sort.var = TRUE)

Two-Sided 95% CI for y1, y2, and y3 by group1
unknown population variances, unequal variance assumption,
split analysis by group2
ci.mean.diff(cbind(x1, x2, x3) ~ group1, data = dat1, split = dat1$group2)

Two-Sided 95% CI for y1, y2, and y3 by group1
unknown population variances, unequal variance assumption,
analysis by group2 separately, split analysis by group3
ci.mean.diff(cbind(x1, x2, x3) ~ group1, data = dat1,

group = dat1$group2, split = dat1$group3)

#-----------------

group1 <- c(3, 1, 4, 2, 5, 3, 6, 7)
group2 <- c(5, 2, 4, 3, 1)

Two-Sided 95% CI for the mean difference between group1 and group2
unknown population variances, unequal variance assumption
ci.mean.diff(group1, group2)

Two-Sided 95% CI for the mean difference between group1 and group2
unknown population variances, equal variance assumption
ci.mean.diff(group1, group2, var.equal = TRUE)

#--------------------------------------
Paired sample design

dat2 <- data.frame(pre = c(1, 3, 2, 5, 7, 6),
post = c(2, 2, 1, 6, 8, 9),
group = c(1, 1, 1, 2, 2, 2), stringsAsFactors = FALSE)

Two-Sided 95% CI for the mean difference in pre and post
unknown population variance of difference scores
ci.mean.diff(dat2$pre, dat2$post, paired = TRUE)

Two-Sided 95% CI for the mean difference in pre and post
unknown population variance of difference scores
analysis by group separately
ci.mean.diff(dat2$pre, dat2$post, paired = TRUE, group = dat2$group)

Two-Sided 95% CI for the mean difference in pre and post
unknown population variance of difference scores
split analysis by group
ci.mean.diff(dat2$pre, dat2$post, paired = TRUE, split = dat2$group)

Two-Sided 95% CI for the mean difference in pre and post
known population standard deviation of difference scores

18 ci.median

ci.mean.diff(dat2$pre, dat2$post, sigma = 2, paired = TRUE)

Two-Sided 95% CI for the mean difference in pre and post
known population variance of difference scores
ci.mean.diff(dat2$pre, dat2$post, sigma2 = 4, paired = TRUE)

One-Sided 95% CI for the mean difference in pre and post
unknown population variance of difference scores
ci.mean.diff(dat2$pre, dat2$post, alternative = "less", paired = TRUE)

Two-Sided 99% CI for the mean difference in pre and post
unknown population variance of difference scores
ci.mean.diff(dat2$pre, dat2$post, conf.level = 0.99, paired = TRUE)

Two-Sided 95% CI for for the mean difference in pre and post
unknown population variance of difference scores
print results with 3 digits
ci.mean.diff(dat2$pre, dat2$post, paired = TRUE, digits = 3)

Two-Sided 95% CI for for the mean difference in pre and post
unknown population variance of difference scores
convert value 1 to NA
ci.mean.diff(dat2$pre, dat2$post, as.na = 1, paired = TRUE)

ci.median Confidence Interval for the Median

Description

This function computes a confidence interval for the median for one or more variables, optionally
by a grouping and/or split variable.

Usage

ci.median(x, alternative = c("two.sided", "less", "greater"), conf.level = 0.95,
group = NULL, split = NULL, sort.var = FALSE, na.omit = FALSE,
digits = 2, as.na = NULL, check = TRUE, output = TRUE)

Arguments

x a numeric vector, matrix or data frame with numeric variables, i.e., factors and
character variables are excluded from x before conducting the analysis.

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less".

conf.level a numeric value between 0 and 1 indicating the confidence level of the interval.

group a numeric vector, character vector or factor as grouping variable.

split a numeric vector, character vector or factor as split variable.

sort.var logical: if TRUE, output table is sorted by variables when specifying group.

ci.median 19

na.omit logical: if TRUE, incomplete cases are removed before conducting the analysis
(i.e., listwise deletion) when specifying more than one outcome variable.

digits an integer value indicating the number of decimal places to be used.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to x, but not to group or split.

check logical: if TRUE, argument specification is checked.

output logical: if TRUE, output is shown on the console.

Details

The confidence interval for the median is computed by using the Binomial distribution to determine
which values in the sample are the lower and the upper confidence limits. Note that at least six valid
observations are needed to compute the confidence interval for the median.

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, list with the input specified in x, group, and split (data), spec-
ification of function arguments (args), and result table (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
John Wiley & Sons.

See Also

ci.mean, ci.mean.diff, ci.prop, ci.prop.diff, ci.var, ci.sd, descript

Examples

dat <- data.frame(group1 = c(1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2),

group2 = c(1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2,
1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2),

x1 = c(3, 1, 4, 2, 5, 3, 2, 3, 6, 4, 3, NA, 5, 3,
3, 2, 6, 3, 1, 4, 3, 5, 6, 7, 4, 3, 5, 4),

x2 = c(4, NA, 3, 6, 3, 7, 2, 7, 3, 3, 3, 1, 3, 6,
3, 5, 2, 6, 8, 3, 4, 5, 2, 1, 3, 1, 2, NA),

x3 = c(7, 8, 5, 6, 4, 2, 8, 3, 6, 1, 2, 5, 8, 6,
2, 5, 3, 1, 6, 4, 5, 5, 3, 6, 3, 2, 2, 4))

Two-Sided 95% CI for x1
ci.median(dat$x1)

20 ci.prop

One-Sided 95% CI for x1
ci.median(dat$x1, alternative = "less")

Two-Sided 99% CI
ci.median(dat$x1, conf.level = 0.99)

Two-Sided 95% CI, print results with 3 digits
ci.median(dat$x1, digits = 3)

Two-Sided 95% CI for x1, convert value 4 to NA
ci.median(dat$x1, as.na = 4)

Two-Sided 95% CI for x1, x2, and x3,
listwise deletion for missing data
ci.median(dat[, c("x1", "x2", "x3")], na.omit = TRUE)

Two-Sided 95% CI for x1, x2, and x3,
analysis by group1 separately
ci.median(dat[, c("x1", "x2", "x3")], group = dat$group1)

Two-Sided 95% CI for x1, x2, and x3,
analysis by group1 separately, sort by variables
ci.median(dat[, c("x1", "x2", "x3")], group = dat$group1, sort.var = TRUE)

Two-Sided 95% CI for x1, x2, and x3,
split analysis by group1
ci.median(dat[, c("x1", "x2", "x3")], split = dat$group1)

Two-Sided 95% CI for x1, x2, and x3,
analysis by group1 separately, split analysis by group2
ci.median(dat[, c("x1", "x2", "x3")], group = dat$group1, split = dat$group2)

ci.prop Confidence Interval for Proportions

Description

This function computes a confidence interval for proportions for one or more variables, optionally
by a grouping and/or split variable.

Usage

ci.prop(x, method = c("wald", "wilson"),
alternative = c("two.sided", "less", "greater"), conf.level = 0.95,
group = NULL, split = NULL, sort.var = FALSE, na.omit = FALSE,
digits = 3, as.na = NULL, check = TRUE, output = TRUE)

ci.prop 21

Arguments

x a numeric vector, matrix or data frame with numeric variables with 0 and 1 val-
ues, i.e., factors and character variables are excluded from x before conducting
the analysis.

method a character string specifying the method for computing the confidence interval,
must be one of "wald", or "wilson" (default).

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less".

conf.level a numeric value between 0 and 1 indicating the confidence level of the interval.

group a numeric vector, character vector or factor as grouping variable.

split a numeric vector, character vector or factor as split variable.

sort.var logical: if TRUE, output table is sorted by variables when specifying group.

na.omit logical: if TRUE, incomplete cases are removed before conducting the analysis
(i.e., listwise deletion) when specifying more than one outcome variable.

digits an integer value indicating the number of decimal places to be used.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to x, but not to group or split.

check logical: if TRUE, argument specification is checked.

output logical: if TRUE, output is shown on the console.

Details

The Wald confidence interval which is based on the normal approximation to the binomial distri-
bution are computed by specifying method = "wald", while the Wilson (1927) confidence interval
(aka Wilson score interval) is requested by specifying method = "wilson". By default, Wilson con-
fidence interval is computed which have been shown to be reliable in small samples of n = 40 or
less, and larger samples of n > 40 (Brown, Cai & DasGupta, 2001), while the Wald confidence
intervals is inadequate in small samples and when p is near 0 or 1 (Agresti & Coull, 1998).

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, list with the input specified in x, group, and split (data), spec-
ification of function arguments (args), and result table (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Agresti, A. & Coull, B.A. (1998). Approximate is better than "exact" for interval estimation of
binomial proportions. American Statistician, 52, 119-126.

22 ci.prop

Brown, L. D., Cai, T. T., & DasGupta, A., (2001). Interval estimation for a binomial proportion.
Statistical Science, 16, 101-133.

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
John Wiley & Sons.

Wilson, E. B. (1927). Probable inference, the law of succession, and statistical inference. Journal
of the American Statistical Association, 22, 209-212.

See Also

ci.mean, ci.mean.diff, ci.median, ci.prop.diff, ci.var, ci.sd, descript

Examples

dat <- data.frame(group1 = c(1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2),
group2 = c(1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2),
x1 = c(0, 1, 0, 0, 1, 1, 0, 1, NA, 0, 1, 0),
x2 = c(0, NA, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1),
x3 = c(1, 1, 1, 0, 1, NA, 1, NA, 0, 0, 0, 1))

Two-Sided 95% CI for x1
ci.prop(dat$x1)

Two-Sided 95% CI for x1 using Wald method
ci.prop(dat$x1, method = "wald")

One-Sided 95% CI for x1
ci.prop(dat$x1, alternative = "less")

Two-Sided 99% CI
ci.prop(dat$x1, conf.level = 0.99)

Two-Sided 95% CI, print results with 4 digits
ci.prop(dat$x1, digits = 4)

Two-Sided 95% CI for x1, x2, and x3,
listwise deletion for missing data
ci.prop(dat[, c("x1", "x2", "x3")], na.omit = TRUE)

Two-Sided 95% CI for x1, x2, and x3,
analysis by group1 separately
ci.prop(dat[, c("x1", "x2", "x3")], group = dat$group1)

Two-Sided 95% CI for x1, x2, and x3,
analysis by group1 separately, sort by variables
ci.prop(dat[, c("x1", "x2", "x3")], group = dat$group1, sort.var = TRUE)

Two-Sided 95% CI for x1, x2, and x3,
split analysis by group1
ci.prop(dat[, c("x1", "x2", "x3")], split = dat$group1)

Two-Sided 95% CI for x1, x2, and x3,
analysis by group1 separately, split analysis by group2

ci.prop.diff 23

ci.prop(dat[, c("x1", "x2", "x3")],
group = dat$group1, split = dat$group2)

ci.prop.diff Confidence Interval for the Difference in Proportions

Description

This function computes a confidence interval for the difference in proportions in a two-sample and
paired-sample design for one or more variables, optionally by a grouping and/or split variable.

Usage

ci.prop.diff(x, ...)

Default S3 method:
ci.prop.diff(x, y, method = c("wald", "newcombe"), paired = FALSE,

alternative = c("two.sided", "less", "greater"), conf.level = 0.95,
group = NULL, split = NULL, sort.var = FALSE, digits = 2,
as.na = NULL, check = TRUE, output = TRUE, ...)

S3 method for class 'formula'
ci.prop.diff(formula, data, method = c("wald", "newcombe"),

alternative = c("two.sided", "less", "greater"), conf.level = 0.95,
group = NULL, split = NULL, sort.var = FALSE, na.omit = FALSE,
digits = 2, as.na = NULL, check = TRUE, output = TRUE, ...)

Arguments

x a numeric vector with 0 and 1 values.

... further arguments to be passed to or from methods.

y a numeric vector with 0 and 1 values.

method a character string specifying the method for computing the confidence interval,
must be one of "wald", or "newcombe" (default).

paired logical: if TRUE, confidence interval for the difference of proportions in paired
samples is computed.

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less".

conf.level a numeric value between 0 and 1 indicating the confidence level of the interval.

group a numeric vector, character vector or factor as grouping variable. Note that a
grouping variable can only be used when computing confidence intervals with
unknown population standard deviation and population variance.

split a numeric vector, character vector or factor as split variable. Note that a split
variable can only be used when computing confidence intervals with unknown
population standard deviation and population variance.

24 ci.prop.diff

sort.var logical: if TRUE, output table is sorted by variables when specifying group.

digits an integer value indicating the number of decimal places to be used.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to x, but not to group or split.

check logical: if TRUE, argument specification is checked.

output logical: if TRUE, output is shown on the console.

formula a formula of the form y ~ group for one outcome variable or cbind(y1, y2,
y3) ~ group for more than one outcome variable where y is a numeric variable
with 0 and 1 values and group a numeric variable, character variable or factor
with two values of factor levels given the corresponding group.

data a matrix or data frame containing the variables in the formula formula.

na.omit logical: if TRUE, incomplete cases are removed before conducting the analysis
(i.e., listwise deletion) when specifying more than one outcome variable.

Details

The Wald confidence interval which is based on the normal approximation to the binomial distri-
bution are computed by specifying method = "wald", while the Newcombe Hybrid Score interval
(Newcombe, 1998a; Newcombe, 1998b) is requested by specifying method = "newcombe". By de-
fault, Newcombe Hybrid Score interval is computed which have been shown to be reliable in small
samples (less than n = 30 in each sample) as well as moderate to larger samples(n > 30 in each
sample) and with proportions close to 0 or 1, while the Wald confidence intervals does not perform
well unless the sample size is large (Fagerland, Lydersen & Laake, 2011).

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, list with the input specified in x, group, and split (data), spec-
ification of function arguments (args), and result table (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Fagerland, M. W., Lydersen S., & Laake, P. (2011) Recommended confidence intervals for two
independent binomial proportions. Statistical Methods in Medical Research, 24, 224-254.

Newcombe, R. G. (1998a). Interval estimation for the difference between independent proportions:
Comparison of eleven methods. Statistics in Medicine, 17, 873-890.

Newcombe, R. G. (1998b). Improved confidence intervals for the difference between binomial
proportions based on paired data. Statistics in Medicine, 17, 2635-2650.

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
John Wiley & Sons.

ci.prop.diff 25

See Also

ci.prop, ci.mean, ci.mean.diff, ci.median, ci.var, ci.sd, descript

Examples

dat1 <- data.frame(group1 = c(1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2),

group2 = c(1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2,
1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2),

group3 = c(1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2,
1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2),

x1 = c(0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, NA, 0, 0,
1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0),

x2 = c(0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1,
1, 0, 1, 0, 1, 1, 1, NA, 1, 0, 0, 1, 1, 1),

x3 = c(1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0,
1, 0, 1, 1, 0, 1, 1, 1, 0, 1, NA, 1, 0, 1))

#--------------------------------------
Two-sample design

Two-Sided 95% CI for x1 by group1
Newcombes Hybrid Score interval
ci.prop.diff(x1 ~ group1, data = dat1)

Two-Sided 95% CI for x1 by group1
Wald CI
ci.prop.diff(x1 ~ group1, data = dat1, method = "wald")

One-Sided 95% CI for x1 by group1
Newcombes Hybrid Score interval
ci.prop.diff(x1 ~ group1, data = dat1, alternative = "less")

Two-Sided 99% CI for x1 by group1
Newcombes Hybrid Score interval
ci.prop.diff(x1 ~ group1, data = dat1, conf.level = 0.99)

Two-Sided 95% CI for y1 by group1
Newcombes Hybrid Score interval, print results with 3 digits
ci.prop.diff(x1 ~ group1, data = dat1, digits = 3)

Two-Sided 95% CI for y1 by group1
Newcombes Hybrid Score interval, convert value 0 to NA
ci.prop.diff(x1 ~ group1, data = dat1, as.na = 0)

Two-Sided 95% CI for y1, y2, and y3 by group1
Newcombes Hybrid Score interval
ci.prop.diff(cbind(x1, x2, x3) ~ group1, data = dat1)

Two-Sided 95% CI for y1, y2, and y3 by group1
Newcombes Hybrid Score interval, listwise deletion for missing data
ci.prop.diff(cbind(x1, x2, x3) ~ group1, data = dat1, na.omit = TRUE)

26 ci.prop.diff

Two-Sided 95% CI for y1, y2, and y3 by group1
Newcombes Hybrid Score interval, analysis by group2 separately
ci.prop.diff(cbind(x1, x2, x3) ~ group1, data = dat1, group = dat1$group2)

Two-Sided 95% CI for y1, y2, and y3 by group1
Newcombes Hybrid Score interval, analysis by group2 separately, sort by variables
ci.prop.diff(cbind(x1, x2, x3) ~ group1, data = dat1, group = dat1$group2,

sort.var = TRUE)

Two-Sided 95% CI for y1, y2, and y3 by group1
split analysis by group2
ci.prop.diff(cbind(x1, x2, x3) ~ group1, data = dat1, split = dat1$group2)

Two-Sided 95% CI for y1, y2, and y3 by group1
Newcombes Hybrid Score interval, analysis by group2 separately, split analysis by group3
ci.prop.diff(cbind(x1, x2, x3) ~ group1, data = dat1,

group = dat1$group2, split = dat1$group3)

#-----------------

group1 <- c(0, 1, 1, 0, 0, 1, 0, 1)
group2 <- c(1, 1, 1, 0, 0)

Two-Sided 95% CI for the mean difference between group1 and group2
Newcombes Hybrid Score interval
ci.prop.diff(group1, group2)

#--------------------------------------
Paires-sample design

dat2 <- data.frame(pre = c(0, 1, 1, 0, 1),
post = c(1, 1, 0, 1, 1), stringsAsFactors = FALSE)

Two-Sided 95% CI for the mean difference in x1 and x2
Newcombes Hybrid Score interval
ci.prop.diff(dat2$pre, dat2$post, paired = TRUE)

Two-Sided 95% CI for the mean difference in x1 and x2
Wald CI
ci.prop.diff(dat2$pre, dat2$post, method = "wald", paired = TRUE)

One-Sided 95% CI for the mean difference in x1 and x2
Newcombes Hybrid Score interval
ci.prop.diff(dat2$pre, dat2$post, alternative = "less", paired = TRUE)

Two-Sided 99% CI for the mean difference in x1 and x2
Newcombes Hybrid Score interval
ci.prop.diff(dat2$pre, dat2$post, conf.level = 0.99, paired = TRUE)

Two-Sided 95% CI for for the mean difference in x1 and x2
Newcombes Hybrid Score interval, print results with 3 digits
ci.prop.diff(dat2$pre, dat2$post, paired = TRUE, digits = 3)

ci.sd 27

ci.sd Confidence Interval for the Standard Deviation

Description

This function computes a confidence interval for the standard deviation for one or more variables,
optionally by a grouping and/or split variable.

Usage

ci.sd(x, method = c("chisq", "bonett"),
alternative = c("two.sided", "less", "greater"), conf.level = 0.95,
group = NULL, split = NULL, sort.var = FALSE, na.omit = FALSE, digits = 2,
as.na = NULL, check = TRUE, output = TRUE)

Arguments

x a numeric vector, matrix or data frame with numeric variables, i.e., factors and
character variables are excluded from x before conducting the analysis.

method a character string specifying the method for computing the confidence interval,
must be one of "chisq", or "bonett" (default).

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less".

conf.level a numeric value between 0 and 1 indicating the confidence level of the interval.

group a numeric vector, character vector or factor as grouping variable.

split a numeric vector, character vector or factor as split variable.

sort.var logical: if TRUE, output table is sorted by variables when specifying group.

na.omit logical: if TRUE, incomplete cases are removed before conducting the analysis
(i.e., listwise deletion) when specifying more than one outcome variable.

digits an integer value indicating the number of decimal places to be used.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to x, but not to group or split.

check logical: if TRUE, argument specification is checked.

output logical: if TRUE, output is shown on the console.

Details

The confidence interval based on the chi-square distribution is computed by specifying method =
"chisq", while the Bonett (2006) confidence interval is requested by specifying method = "bonett".
By default, the Bonett confidence interval interval is computed which performs well under moder-
ate departure from normality, while the confidence interval based on the chi-square distribution
is highly sensitive to minor violations of the normality assumption and its performance does not
improve with increasing sample size.

28 ci.sd

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, list with the input specified in x, group, and split (data), spec-
ification of function arguments (args), and result table (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
John Wiley & Sons.

Bonett, D. G. (2006). Approximate confidence interval for standard deviation of nonnormal distri-
butions. Computational Statistics and Data Analysis, 50, 775-782. https://doi.org/10.1016/j.csda.2004.10.003

See Also

ci.mean, ci.mean.diff, ci.median, ci.prop, ci.prop.diff, ci.var, descript

Examples

dat <- data.frame(group1 = c(1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2),

group2 = c(1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2,
1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2),

x1 = c(3, 1, 4, 2, 5, 3, 2, 3, 6, 4, 3, NA, 5, 3,
3, 2, 6, 3, 1, 4, 3, 5, 6, 7, 4, 3, 5, 4),

x2 = c(4, NA, 3, 6, 3, 7, 2, 7, 3, 3, 3, 1, 3, 6,
3, 5, 2, 6, 8, 3, 4, 5, 2, 1, 3, 1, 2, NA),

x3 = c(7, 8, 5, 6, 4, 2, 8, 3, 6, 1, 2, 5, 8, 6,
2, 5, 3, 1, 6, 4, 5, 5, 3, 6, 3, 2, 2, 4))

Two-Sided 95% CI for x1
ci.sd(dat$x1)

Two-Sided 95% CI for x1 using chi square distribution
ci.sd(dat$x1, method = "chisq")

One-Sided 95% CI for x1
ci.sd(dat$x1, alternative = "less")

Two-Sided 99% CI
ci.sd(dat$x1, conf.level = 0.99)

Two-Sided 95% CI, print results with 3 digits
ci.sd(dat$x1, digits = 3)

Two-Sided 95% CI for x1, convert value 4 to NA
ci.sd(dat$x1, as.na = 4)

ci.var 29

Two-Sided 95% CI for x1, x2, and x3,
listwise deletion for missing data
ci.sd(dat[, c("x1", "x2", "x3")], na.omit = TRUE)

Two-Sided 95% CI for x1, x2, and x3,
analysis by group1 separately
ci.sd(dat[, c("x1", "x2", "x3")], group = dat$group1)

Two-Sided 95% CI for x1, x2, and x3,
analysis by group1 separately, sort by variables
ci.sd(dat[, c("x1", "x2", "x3")], group = dat$group1, sort.var = TRUE)

Two-Sided 95% CI for x1, x2, and x3,
split analysis by group1
ci.sd(dat[, c("x1", "x2", "x3")], split = dat$group1)

Two-Sided 95% CI for x1, x2, and x3,
analysis by group1 separately, split analysis by group2
ci.sd(dat[, c("x1", "x2", "x3")],

group = dat$group1, split = dat$group2)

ci.var Confidence Interval for the Variance

Description

This function computes a confidence interval for the variance for one or more variables, optionally
by a grouping and/or split variable.

Usage

ci.var(x, method = c("chisq", "bonett"),
alternative = c("two.sided", "less", "greater"), conf.level = 0.95,
group = NULL, split = NULL, sort.var = FALSE, na.omit = FALSE,
digits = 2, as.na = NULL, check = TRUE, output = TRUE)

Arguments

x a numeric vector, matrix or data frame with numeric variables, i.e., factors and
character variables are excluded from x before conducting the analysis.

method a character string specifying the method for computing the confidence interval,
must be one of "chisq", or "bonett" (default).

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less".

conf.level a numeric value between 0 and 1 indicating the confidence level of the interval.

group a numeric vector, character vector or factor as grouping variable.

split a numeric vector, character vector or factor as split variable.

30 ci.var

sort.var logical: if TRUE, output table is sorted by variables when specifying group.

na.omit logical: if TRUE, incomplete cases are removed before conducting the analysis
(i.e., listwise deletion) when specifying more than one outcome variable.

digits an integer value indicating the number of decimal places to be used.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to x, but not to group or split.

check logical: if TRUE, argument specification is checked.

output logical: if TRUE, output is shown on the console.

Details

The confidence interval based on the chi-square distribution is computed by specifying method =
"chisq", while the Bonett (2006) confidence interval is requested by specifying method = "bonett".
By default, the Bonett confidence interval interval is computed which performs well under moder-
ate departure from normality, while the confidence interval based on the chi-square distribution is
highly sensitive to minor violations of the normality assumption and its performance does not im-
prove with increasing sample size. Note that at least four valid observations are needed to compute
the Bonett confidence interval.

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, list with the input specified in x, group, and split (data), spec-
ification of function arguments (args), and result table (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
John Wiley & Sons.

Bonett, D. G. (2006). Approximate confidence interval for standard deviation of nonnormal distri-
butions. Computational Statistics and Data Analysis, 50, 775-782. https://doi.org/10.1016/j.csda.2004.10.003

See Also

ci.mean, ci.mean.diff, ci.median, ci.prop, ci.prop.diff, ci.sd, descript

Examples

dat <- data.frame(group1 = c(1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2),

group2 = c(1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2,
1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2),

x1 = c(3, 1, 4, 2, 5, 3, 2, 3, 6, 4, 3, NA, 5, 3,

cluster.scores 31

3, 2, 6, 3, 1, 4, 3, 5, 6, 7, 4, 3, 5, 4),
x2 = c(4, NA, 3, 6, 3, 7, 2, 7, 3, 3, 3, 1, 3, 6,

3, 5, 2, 6, 8, 3, 4, 5, 2, 1, 3, 1, 2, NA),
x3 = c(7, 8, 5, 6, 4, 2, 8, 3, 6, 1, 2, 5, 8, 6,

2, 5, 3, 1, 6, 4, 5, 5, 3, 6, 3, 2, 2, 4))

Two-Sided 95% CI for x1
ci.var(dat$x1)

Two-Sided 95% CI for x1 using chi square distribution
ci.var(dat$x1, method = "chisq")

One-Sided 95% CI for x1
ci.var(dat$x1, alternative = "less")

Two-Sided 99% CI
ci.var(dat$x1, conf.level = 0.99)

Two-Sided 95% CI, print results with 3 digits
ci.var(dat$x1, digits = 3)

Two-Sided 95% CI for x1, convert value 4 to NA
ci.var(dat$x1, as.na = 4)

Two-Sided 95% CI for x1, x2, and x3,
listwise deletion for missing data
ci.var(dat[, c("x1", "x2", "x3")], na.omit = TRUE)

Two-Sided 95% CI for x1, x2, and x3,
analysis by group1 separately
ci.var(dat[, c("x1", "x2", "x3")], group = dat$group1)

Two-Sided 95% CI for x1, x2, and x3,
analysis by group1 separately, sort by variables
ci.var(dat[, c("x1", "x2", "x3")], group = dat$group1, sort.var = TRUE)

Two-Sided 95% CI for x1, x2, and x3,
split analysis by group1
ci.var(dat[, c("x1", "x2", "x3")], split = dat$group1)

Two-Sided 95% CI for x1, x2, and x3,
analysis by group1 separately, split analysis by group2
ci.var(dat[, c("x1", "x2", "x3")],

group = dat$group1, split = dat$group2)

cluster.scores Cluster Scores

Description

This function computes cluster means by default.

32 cluster.scores

Usage

cluster.scores(x, cluster, fun = c("mean", "sum", "median", "var", "sd", "min", "max"),
expand = TRUE, as.na = NULL, check = TRUE)

Arguments

x a numeric vector.

cluster a vector representing the nested grouping structure (i.e., group or cluster vari-
able).

fun character string indicating the function used to compute cluster scores, default:
"mean".

expand logical: if TRUE, vector of cluster scores is expanded to match the input vector x.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to the argument x, but not to cluster.

check logical: if TRUE, argument specification is checked.

Value

Returns a numeric vector containing cluster scores with the same length as x if expand = TRUE or
with the length length(unique(cluster)) if expand = FALSE.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Hox, J., Moerbeek, M., & van de Schoot, R. (2018). Multilevel analysis: Techniques and applica-
tions (3rd. ed.). Routledge.

Snijders, T. A. B., & Bosker, R. J. (2012). Multilevel analysis: An introduction to basic and ad-
vanced multilevel modeling (2nd ed.). Sage Publishers.

See Also

item.scores, multilevel.descript, multilevel.icc

Examples

dat.ml <- data.frame(id = c(1, 2, 3, 4, 5, 6, 7, 8, 9),
cluster = c(1, 1, 1, 2, 2, 2, 3, 3, 3),
x = c(4, 2, 5, 6, 3, 4, 1, 3, 4))

Compute cluster means and expand to match the input x
cluster.scores(dat.ml$x, cluster = dat.ml$cluster)

Compute standard deviation for each cluster and expand to match the input x
cluster.scores(dat.ml$x, cluster = dat.ml$cluster, fun = "sd")

cohens.d 33

Compute cluster means without expanding the vector
cluster.scores(dat.ml$x, cluster = dat.ml$cluster, expand = FALSE)

cohens.d Cohen’s d

Description

This function computes Cohen’s d for one-sample, two-sample (i.e., between-subject design), and
paired-sample designs (i.e., within-subject design) for one or more variables, optionally by a group-
ing and/or split variable. In a two-sample design, the function computes the standardized mean
difference by dividing the difference between means of the two groups of observations by the
weighted pooled standard deviation (i.e., Cohen’s ds according to Lakens, 2013) by default. In
a paired-sample design, the function computes the standardized mean difference by dividing the
mean of the difference scores by the standard deviation of the difference scores (i.e., Cohen’s dz ac-
cording to Lakens, 2013) by default. Note that by default Cohen’s d is computed without applying
the correction factor for removing the small sample bias (i.e., Hedges’ g).

Usage

cohens.d(x, ...)

Default S3 method:
cohens.d(x, y = NULL, mu = 0, paired = FALSE, weighted = TRUE, cor = TRUE,

ref = NULL, correct = FALSE, alternative = c("two.sided", "less", "greater"),
conf.level = 0.95, group = NULL, split = NULL, sort.var = FALSE,
digits = 2, as.na = NULL, check = TRUE, output = TRUE, ...)

S3 method for class 'formula'
cohens.d(formula, data, weighted = TRUE, cor = TRUE, ref = NULL,

correct = FALSE, alternative = c("two.sided", "less", "greater"),
conf.level = 0.95, group = NULL, split = NULL, sort.var = FALSE,
na.omit = FALSE, digits = 2, as.na = NULL, check = TRUE,
output = TRUE, ...)

Arguments

x a numeric vector of data values.

y a numeric vector of data values.

mu a numeric value indicating the reference mean.

paired logical: if TRUE, Cohen’s d for a paired-sample design is computed.

weighted logical: if TRUE (default), the weighted pooled standard deviation is used to
compute the standardized mean difference between two groups of a two-sample
design (i.e., paired = FALSE), while standard deviation of the difference scores
is used to compute the standardized mean difference in a paired-sample design
(i.e., paired = TRUE).

34 cohens.d

cor logical: if TRUE (default), paired = TRUE, and weighted = FALSE, Cohen’s d for
a paired-sample design while controlling for the correlation between the two sets
of measurement is computed. Note that this argument is only used in a paired-
sample design (i.e., paired = TRUE) when specifying weighted = FALSE.

ref character string "x" or "y" for specifying the reference reference group when
using the default cohens.d() function or a numeric value or character string
indicating the reference group in a two-sample design when using the formula
cohens.d() function. The standard deviation of the reference variable or refer-
ence group is used to standardized the mean difference. Note that this argument
is only used in a two-sample design (i.e., paired = FALSE).

correct logical: if TRUE, correction factor to remove positive bias in small samples is
used.

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less".

conf.level a numeric value between 0 and 1 indicating the confidence level of the interval.

group a numeric vector, character vector or factor as grouping variable.

split a numeric vector, character vector or factor as split variable.

sort.var logical: if TRUE, output table is sorted by variables when specifying group.

digits an integer value indicating the number of decimal places to be used for display-
ing results.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function
is only applied to y but not to group in a two-sample design, while as.na()
function is applied to pre and post in a paired-sample design.

check logical: if TRUE, argument specification is checked.

output logical: if TRUE, output is shown on the console.

formula a formula of the form y ~ group for one outcome variable or cbind(y1, y2,
y3) ~ group for more than one outcome variable where y is a numeric variable
giving the data values and group a numeric variable, character variable or factor
with two values or factor levels giving the corresponding groups.

data a matrix or data frame containing the variables in the formula formula.

na.omit logical: if TRUE, incomplete cases are removed before conducting the analysis
(i.e., listwise deletion) when specifying more than one outcome variable.

... further arguments to be passed to or from methods.

Details

Cohen (1988, p.67) proposed to compute the standardized mean difference in a two-sample design
by dividing the mean difference by the unweighted pooled standard deviation (i.e., weighted =
FALSE).

Glass et al. (1981, p. 29) suggested to use the standard deviation of the control group (e.g., ref
= 0 if the control group is coded with 0) to compute the standardized mean difference in a two-
sample design (i.e., Glass’s ∆) since the standard deviation of the control group is unaffected by
the treatment and will therefore more closely reflect the population standard deviation.

cohens.d 35

Hedges (1981, p. 110) recommended to weight each group’s standard deviation by its sample size
resulting in a weighted and pooled standard deviation (i.e., weighted = TRUE, default). According
to Hedges and Olkin (1985, p. 81), the standardized mean difference based on the weighted and
pooled standard deviation has a positive small sample bias, i.e., standardized mean difference is
overestimated in small samples (i.e., sample size less than 20 or less than 10 in each group). How-
ever, a correction factor can be applied to remove the small sample bias (i.e., correct = TRUE). Note
that the function uses a gamma function for computing the correction factor, while a approximation
method is used if computation based on the gamma function fails.

Note that the terminology is inconsistent because the standardized mean difference based on the
weighted and pooled standard deviation is usually called Cohen’s d, but sometimes called Hedges’
g. Oftentimes, Cohen’s d is called Hedges’ d as soon as the small sample correction factor is
applied. Cumming and Calin-Jageman (2017, p.171) recommended to avoid the term Hedges’ g
, but to report which standard deviation was used to standardized the mean difference (e.g., un-
weighted/weighted pooled standard deviation, or the standard deviation of the control group) and
whether a small sample correction factor was applied.

As for the terminology according to Lakens (2013), in a two-sample design (i.e., paired = FALSE)
Cohen’s ds is computed when using weighted = TRUE (default) and Hedges’s gs is computed when
using correct = TRUE in addition. In a paired-sample design (i.e., paired = TRUE), Cohen’s dz is
computed when using weighted = TRUE, default, while Cohen’s drm is computed when using
weighted = FALSE and cor = TRUE, default and Cohen’s dav is computed when using weighted
= FALSE and cor = FALSE. Corresponding Hedges’ gz , eqng_rm,

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, matrix or data frame specified in x (data), specification of func-
tion arguments (args), and list with results (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Academic Press.

Cumming, G., & Calin-Jageman, R. (2017). Introduction to the new statistics: Estimation, open
science, & beyond. Routledge.

Glass. G. V., McGaw, B., & Smith, M. L. (1981). Meta-analysis in social research. Sage Publica-
tion.

Goulet-Pelletier, J.-C., & Cousineau, D. (2018) A review of effect sizes and their confidence in-
tervals, Part I: The Cohen’s d family. The Quantitative Methods for Psychology, 14, 242-265.
https://doi.org/10.20982/tqmp.14.4.p242

Hedges, L. V. (1981). Distribution theory for Glass’s estimator of effect size and related estimators.
Journal of Educational Statistics, 6(3), 106-128.

Hedges, L. V. & Olkin, I. (1985). Statistical methods for meta-analysis. Academic Press.

Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practi-
cal primer for t-tests and ANOVAs. Frontiers in Psychology, 4, 1-12. https://doi.org/10.3389/fpsyg.2013.00863

36 cohens.d

See Also

eta.sq, cor.cont, cor.cramer,cor.matrix, na.auxiliary

Examples

dat1 <- data.frame(group1 = c(1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
1, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1),

group2 = c(1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2,
1, 2, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2),

group3 = c(1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 1, 1, 1,
1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1),

x1 = c(3, 2, 5, 3, 6, 3, 2, 4, 6, 5, 3, 3, 5, 4,
4, 3, 5, 3, 2, 3, 3, 6, 6, 7, 5, 6, 6, 4),

x2 = c(4, 4, 3, 6, 4, 7, 3, 5, 3, 3, 4, 2, 3, 6,
3, 5, 2, 6, 8, 3, 2, 5, 4, 5, 3, 2, 2, 4),

x3 = c(7, 6, 5, 6, 4, 2, 8, 3, 6, 1, 2, 5, 8, 6,
2, 5, 3, 1, 6, 4, 5, 5, 3, 6, 3, 2, 2, 4),

stringsAsFactors = FALSE)

#--------------------------------------
One-sample design

Cohen's d.z with two-sided 95% CI
population mean = 3
cohens.d(dat1$x1, mu = 3)

Cohen's d.z (aka Hedges' g.z) with two-sided 95% CI
population mean = 3, with small sample correction factor
cohens.d(dat1$x1, mu = 3, correct = TRUE)

Cohen's d.z for more than one variable with two-sided 95% CI
population mean = 3
cohens.d(dat1[, c("x1", "x2", "x3")], mu = 3)

Cohen's d.z with two-sided 95% CI
population mean = 3, by group1 separately
cohens.d(dat1$x1, mu = 3, group = dat1$group1)

Cohen's d.z for more than one variable with two-sided 95% CI
population mean = 3, by group1 separately
cohens.d(dat1[, c("x1", "x2", "x3")], mu = 3, group = dat1$group1)

Cohen's d.z with two-sided 95% CI
population mean = 3, split analysis by group1
cohens.d(dat1$x1, mu = 3, split = dat1$group1)

Cohen's d.z for more than one variable with two-sided 95% CI
population mean = 3, split analysis by group1
cohens.d(dat1[, c("x1", "x2", "x3")], mu = 3, split = dat1$group1)

Cohen's d.z with two-sided 95% CI
population mean = 3, by group1 separately1, split by group2

cohens.d 37

cohens.d(dat1$x1, mu = 3, group = dat1$group1, split = dat1$group2)

Cohen's d.z for more than one variable with two-sided 95% CI
population mean = 3, by group1 separately1, split by group2
cohens.d(dat1[, c("x1", "x2", "x3")], mu = 3, group = dat1$group1,

split = dat1$group2)

#--------------------------------------
Two-sample design

Cohen's d.s with two-sided 95% CI
weighted pooled SD
cohens.d(x1 ~ group1, data = dat1)

Cohen's d.s with two-sided 99% CI
weighted pooled SD
cohens.d(x1 ~ group1, data = dat1, conf.level = 0.99)

Cohen's d.s with one-sided 99% CI
weighted pooled SD
cohens.d(x1 ~ group1, data = dat1, alternative = "greater")

Cohen's d.s with two-sided 99% CI
weighted pooled SD
cohens.d(x1 ~ group1, data = dat1, conf.level = 0.99)

Cohen's d.s with one-sided 95%% CI
weighted pooled SD
cohens.d(x1 ~ group1, data = dat1, alternative = "greater")

Cohen's d.s for more than one variable with two-sided 95% CI
weighted pooled SD
cohens.d(cbind(x1, x2, x3) ~ group1, data = dat1)

Cohen's d with two-sided 95% CI
unweighted SD
cohens.d(x1 ~ group1, data = dat1, weighted = FALSE)

Cohen's d.s (aka Hedges' g.s) with two-sided 95% CI
weighted pooled SD, with small sample correction factor
cohens.d(x1 ~ group1, data = dat1, correct = TRUE)

Cohen's d (aka Hedges' g) with two-sided 95% CI
Unweighted SD, with small sample correction factor
cohens.d(x1 ~ group1, data = dat1, weighted = FALSE, correct = TRUE)

Cohen's d (aka Glass's delta) with two-sided 95% CI
SD of reference group 1
cohens.d(x1 ~ group1, data = dat1, ref = 1)

Cohen's d.s with two-sided 95% CI
weighted pooled SD, by group2 separately
cohens.d(x1 ~ group1, data = dat1, group = dat1$group2)

38 cohens.d

Cohen's d.s for more than one variable with two-sided 95% CI
weighted pooled SD, by group2 separately
cohens.d(cbind(x1, x2, x3) ~ group1, data = dat1, group = dat1$group2)

Cohen's d.s with two-sided 95% CI
weighted pooled SD, split analysis by group2
cohens.d(x1 ~ group1, data = dat1, split = dat1$group2)

Cohen's d.s for more than one variable with two-sided 95% CI
weighted pooled SD, split analysis by group2
cohens.d(cbind(x1, x2, x3) ~ group1, data = dat1, split = dat1$group2)

Cohen's d.s with two-sided 95% CI
weighted pooled SD, by group2 separately, split analysis by group3
cohens.d(x1 ~ group1, data = dat1,

group = dat1$group2, split = dat1$group3)

Cohen's d.s for more than one variable with two-sided 95% CI
weighted pooled SD, by group2 separately, split analysis by group3
cohens.d(cbind(x1, x2, x3) ~ group1, data = dat1,

group = dat1$group2, split = dat1$group3)

#--------------------------------------
Paired-sample design

Cohen's d.z with two-sided 95% CI
SD of the difference scores
cohens.d(dat1$x1, dat1$x2, paired = TRUE)

Cohen's d.z with two-sided 99% CI
SD of the difference scores
cohens.d(dat1$x1, dat1$x2, paired = TRUE, conf.level = 0.99)

Cohen's d.z with one-sided 95% CI
SD of the difference scores
cohens.d(dat1$x1, dat1$x2, paired = TRUE, alternative = "greater")

Cohen's d.rm with two-sided 95% CI
controlling for the correlation between measures
cohens.d(dat1$x1, dat1$x2, paired = TRUE, weighted = FALSE)

Cohen's d.av with two-sided 95% CI
without controlling for the correlation between measures
cohens.d(dat1$x1, dat1$x2, paired = TRUE, weighted = FALSE, cor = FALSE)

Cohen's d.z (aka Hedges' g.z) with two-sided 95% CI
SD of the differnece scores
cohens.d(dat1$x1, dat1$x2, paired = TRUE, correct = TRUE)

Cohen's d.rm (aka Hedges' g.rm) with two-sided 95% CI
controlling for the correlation between measures
cohens.d(dat1$x1, dat1$x2, paired = TRUE, weighted = FALSE, correct = TRUE)

collin.diag 39

Cohen's d.av (aka Hedges' g.av) with two-sided 95% CI
without controlling for the correlation between measures
cohens.d(dat1$x1, dat1$x2, paired = TRUE, weighted = FALSE, cor = FALSE,

correct = TRUE)

Cohen's d.z with two-sided 95% CI
SD of the difference scores, by group1 separately
cohens.d(dat1$x1, dat1$x2, paired = TRUE, group = dat1$group1)

Cohen's d.z with two-sided 95% CI
SD of the difference scores, split analysis by group1
cohens.d(dat1$x1, dat1$x2, paired = TRUE, split = dat1$group1)

Cohen's d.z with two-sided 95% CI
SD of the difference scores, by group1 separately, split analysis by group2
cohens.d(dat1$x1, dat1$x2, paired = TRUE,

group = dat1$group1, split = dat1$group2)

collin.diag Collinearity Diagnostics

Description

This function computes tolerance, standard error inflation factor, variance inflation factor, eigen-
values, condition index, and variance proportions for linear, generalized linear, and mixed-effects
models.

Usage

collin.diag(model, print = c("all", "vif", "eigen"), digits = 3, p.digits = 3,
check = TRUE, output = TRUE)

Arguments

model a fitted model of class "lm", "glm", "lmerMod", "lmerModLmerTest", "glmerMod",
"lme", or "glmmTMB".

print a character vector indicating which results to show, i.e. "all", for all results,
"vif" for tolerance, std. error inflation factor, and variance inflation factor, or
eigen for eigenvalue, condition index, and variance proportions.

digits an integer value indicating the number of decimal places to be used for display-
ing results.

p.digits an integer value indicating the number of decimal places to be used for display-
ing the p-value.

check logical: if TRUE, argument specification is checked.

output logical: if TRUE, output is shown on the console.

40 collin.diag

Details

Collinearity diagnostics can be conducted for objects returned from the lm() and glm() function,
but also from objects returned from the lmer() and glmer() function from the lme4 package,
lme() function from the nlme package, and the glmmTMB() function from the glmmTMB package.

The generalized variance inflation factor (Fox & Monette, 1992) is computed for terms with more
than 1 df resulting from factors with more than two levels. The generalized VIF (GVIF) is inter-
pretable as the inflation in size of the confidence ellipse or ellipsoid for the coefficients of the term
in comparison with what would be obtained for orthogonal data. GVIF is invariant to the coding of
the terms in the model. In order to adjust for the dimension of the confidence ellipsoid, GVIF

1
2df is

computed. Note that the adjusted GVIF (aGVIF) is actually a generalized standard error inflation
factor (GSIF). Thus, the aGIF needs to be squared before applying a common cutoff threshold for
the VIF (e.g., VIF > 10). Note that the output of collin.diag() function reports either the vari-
ance inflation factor or the squared generalized variance inflation factor in the column VIF, while
the standard error inflation factor or the adjusted generalized variance inflation factor is reported in
the column SIF.

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, model specified in the model argument (model), specification of
function arguments (args), list with results (result).

Note

The computation of the VIF and the GVIF is based on the vif() function in the car package by
John Fox, Sanford Weisberg and Brad Price (2020), and the computation of eigenvalues, condition
index, and variance proportions is based on the ols_eigen_cindex() function in the olsrr package
by Aravind Hebbali (2020).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Fox, J., & Monette, G. (1992). Generalized collinearity diagnostics. Journal of the American
Statistical Association, 87, 178-183.

Fox, J., Weisberg, S., & Price, B. (2020). car: Companion to Applied Regression. R package
version 3.0-8. https://cran.r-project.org/web/packages/car/

Hebbali, A. (2020). olsrr: Tools for building OLS regression models. R package version 0.5.3.
https://cran.r-project.org/web/packages/olsrr/

Examples

dat <- data.frame(group = c(1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4),
x1 = c(3, 2, 4, 9, 5, 3, 6, 4, 5, 6, 3, 5),
x2 = c(1, 4, 3, 1, 2, 4, 3, 5, 1, 7, 8, 7),
x3 = c(7, 3, 4, 2, 5, 6, 4, 2, 3, 5, 2, 8),

collin.diag 41

x4 = c("a", "b", "a", "c", "c", "c", "a", "b", "b", "c", "a", "c"),
y1 = c(2, 7, 4, 4, 7, 8, 4, 2, 5, 1, 3, 8),
y2 = c(0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1),
stringsAsFactors = TRUE)

#----------------------------
Linear model

Estimate linear model with continuous predictors
mod.lm1 <- lm(y1 ~ x1 + x2 + x3, data = dat)

Tolerance, std. error, and variance inflation factor
collin.diag(mod.lm1)

Tolerance, std. error, and variance inflation factor
Eigenvalue, Condition index, and variance proportions
collin.diag(mod.lm1, print = "all")

Estimate model with continuous and categorical predictors
mod.lm2 <- lm(y1 ~ x1 + x2 + x3 + x4, data = dat)

Tolerance, generalized std. error, and variance inflation factor
collin.diag(mod.lm2)

#----------------------------
Generalized linear model

Estimate logistic regression model with continuous predictors
mod.glm <- glm(y2 ~ x1 + x2 + x3, data = dat, family = "binomial")

Tolerance, std. error, and variance inflation factor
collin.diag(mod.glm)

Not run:
#----------------------------
Linear mixed-effects model

Estimate linear mixed-effects model with continuous predictors using lme4 package
mod.lmer <- lme4::lmer(y1 ~ x1 + x2 + x3 + (1|group), data = dat)

Tolerance, std. error, and variance inflation factor
collin.diag(mod.lmer)

Estimate linear mixed-effects model with continuous predictors using nlme package
mod.lme <- nlme::lme(y1 ~ x1 + x2 + x3, random = ~ 1 | group, data = dat)

Tolerance, std. error, and variance inflation factor
collin.diag(mod.lme)

Estimate linear mixed-effects model with continuous predictors using glmmTMB package
mod.glmmTMB1 <- glmmTMB::glmmTMB(y1 ~ x1 + x2 + x3 + (1|group), data = dat)

Tolerance, std. error, and variance inflation factor

42 cor.cont

collin.diag(mod.glmmTMB1)

#----------------------------
Generalized linear mixed-effects model

Estimate mixed-effects logistic regression model with continuous predictors using lme4 package
mod.glmer <- lme4::glmer(y2 ~ x1 + x2 + x3 + (1|group), data = dat, family = "binomial")

Tolerance, std. error, and variance inflation factor
collin.diag(mod.glmer)

Estimate mixed-effects logistic regression model with continuous predictors using glmmTMB package
mod.glmmTMB2 <- glmmTMB::glmmTMB(y2 ~ x1 + x2 + x3 + (1|group), data = dat, family = "binomial")

Tolerance, std. error, and variance inflation factor
collin.diag(mod.glmmTMB2)

End(Not run)

cor.cont Pearson’s Contingency Coefficient

Description

This function computes the (adjusted) Pearson’s contingency coefficient between two or more than
two variables.

Usage

cor.cont(x, adjust = FALSE, tri = c("both", "lower", "upper"), digits = 2,
as.na = NULL, check = TRUE, output = TRUE)

Arguments

x a matrix or data frame with integer vectors, character vectors or factors..

adjust logical: if TRUE, the adjusted contingency coefficient (i.e., Sakoda’s adjusted
Pearson’s C) is computed.

tri a character string indicating which triangular of the matrix to show on the con-
sole, i.e., both for upper and lower triangular, lower (default) for the lower
triangular, and upper for the upper triangular.

digits an integer value indicating the number of decimal places digits to be used for
displaying contingency coefficients.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

check logical: if TRUE, argument specification is checked.

output logical: if TRUE, output is shown on the console.

cor.cont 43

Details

The maximum contingency coefficient is determined by the distribution of the two variables, i.e., the
contingency coefficient cannot achieve the value of 1 in many cases. According to Sakoda (1977),
the contingency coefficient can be adjusted by relating the coefficient to the possible maximum,
C/Cmax.

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, matrix or data frame specified in x (data), specification of func-
tion arguments (args), and list with results (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

cor.matrix, cor.cramer, cor.phi, cor.poly, cohens.d, .

References

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
John Wiley & Sons.

Sakoda, J.M. (1977). Measures of association for multivariate contingency tables. Proceedings of
the Social Statistics Section of the American Statistical Association (Part III), 777-780.

Examples

dat <- data.frame(x = c(1, 1, 2, 1, 3, 3, 2, 2, 1, 2),
y = c(3, 2, 3, 1, 2, 4, 1, 2, 3, 4),
z = c(2, 2, 2, 1, 2, 2, 1, 2, 1, 2))

Contingency coefficient between x and y
cor.cont(dat[, c("x", "y")])

Adjusted contingency coefficient between x and y
cor.cont(dat[, c("x", "y")], adjust = TRUE)

Contingency coefficient matrix between x, y, and z
cor.cont(dat)

Adjusted contingency coefficient matrix between x, y, and z
cor.cont(dat, adjust = TRUE)

44 cor.cramer

cor.cramer Cramer’s V

Description

This function computes the (bias-corrected) Cramer’s V between two or more than two variables.

Usage

cor.cramer(x, correct = TRUE, tri = c("both", "lower", "upper"), digits = 2,
as.na = NULL, check = TRUE, output = TRUE)

Arguments

x a matrix or data frame with integer vectors, character vectors or factors.
correct logical: if TRUE (default), the bias-corrected Cramer’s V is computed.
tri a character string or character vector indicating which triangular of the matrix to

show on the console, i.e., both for upper and lower triangular, lower (default)
for the lower triangular, and upper for the upper triangular.

digits an integer value indicating the number of decimal places digits to be used for
displaying Cramer’s V.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

check logical: if TRUE, argument specification is checked.
output logical: if TRUE, output is shown on the console.

Details

Cramer’s V can have large bias tending to overestimate the strength of association which depends
on the size of the table and the sample size. As proposed by Bergsma (2013) a bias correction can
be applied to obtain the bias-corrected Cramer’s V.

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, matrix or data frame specified in x (data), specification of func-
tion arguments (args), and list with results (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
John Wiley & Sons.
Bergsma, W. (2013). A bias correction for Cramer’s V and Tschuprow’s T. Journal of the Korean
Statistical Society, 42, 323-328. https://doi.org/10.1016/j.jkss.2012.10.002

cor.matrix 45

See Also

cor.matrix, cor.cont, cor.phi, cor.poly, cohens.d.

Examples

dat <- data.frame(x = c(1, 1, 2, 1, 3, 3, 2, 2, 1, 2),
y = c(1, 2, 2, 1, 3, 4, 1, 2, 3, 1),
z = c(1, 1, 2, 1, 2, 3, 1, 2, 3, 2))

Bias-corrected Cramer's V between x and y
cor.cramer(dat[, c("x", "y")])

Cramer's V between x and y
cor.cramer(dat[, c("x", "y")], correct = FALSE)

Bias-corrected Cramer's V matrix between x, y, and z
cor.cramer(dat[, c("x", "y", "z")])

Cramer's V matrix between x, y, and z
cor.cramer(dat[, c("x", "y", "z")], correct = FALSE)

cor.matrix Correlation Matrix

Description

This function computes a correlation matrix based on Pearson product-moment correlation coef-
ficient, Spearman’s rank-order correlation coefficient, Kendall’s Tau-b correlation coefficient, or
Kendall-Stuart’s Tau-c correlation coefficient and computes significance values (p-values) for test-
ing the hypothesis H0: ρ = 0 for all pairs of variables.

Usage

cor.matrix(x, method = c("pearson", "spearman", "kendall-b", "kendall-c"),
na.omit = FALSE, group = NULL, sig = FALSE, alpha = 0.05,
print = c("all", "cor", "n", "stat", "df", "p"),
tri = c("both", "lower", "upper"),
p.adj = c("none", "bonferroni", "holm", "hochberg", "hommel",

"BH", "BY", "fdr"), continuity = TRUE,
digits = 2, p.digits = 3, as.na = NULL, check = TRUE, output = TRUE)

Arguments

x a matrix or data frame.
method a character vector indicating which correlation coefficient is to be computed,

i.e. "pearson" for Pearson product-moment correlation coefficient (default),
"spearman" for Spearman’s rank-order correlation coefficient, kendall-b for
Kendall’s Tau-b correlation coefficient or kendall-c for Kendall-Stuart’s Tau-c
correlation coefficient.

46 cor.matrix

na.omit logical: if TRUE, incomplete cases are removed before conducting the analysis
(i.e., listwise deletion); if FALSE (default), pairwise deletion is used.

group a numeric vector, character vector of factor as grouping variable to show re-
sults for each group separately, i.e., upper triangular for one group and lower
triangular for another group. Note that the grouping variable is limited to two
groups.

sig logical: if TRUE, statistically significant correlation coefficients are shown in
boldface on the console.

alpha a numeric value between 0 and 1 indicating the significance level at which cor-
relation coefficients are printed boldface when sig = TRUE.

print a character string or character vector indicating which results to show on the
console, i.e. "all" for all results, "cor" for correlation coefficients, "n" for the
sample sizes, and "p" for p-values.

tri a character string indicating which triangular of the matrix to show on the con-
sole, i.e. "all" for all results, "cor" for correlation coefficients, "n" for the
sample sizes, and "p" for p-values.

p.adj a character string indicating an adjustment method for multiple testing based on
p.adjust, i.e., none (default), bonferroni, holm, hochberg, hommel, BH, BY,
or fdr.

continuity logical: if TRUE (default), continuity correction is used for testing Spearman’s
rank-order correlation coefficient and Kendall’s Tau-b correlation.

digits an integer value indicating the number of decimal places to be used for display-
ing correlation coefficients.

p.digits an integer value indicating the number of decimal places to be used for display-
ing p-values.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

check logical: if TRUE, argument specification is checked.

output logical: if TRUE, output is shown on the console.

Details

Note that unlike the cor.test function, this function does not compute an exact p-value for Spear-
man’s rank-order correlation coefficient or Kendall’s Tau-b correlation coefficient, but uses the
asymptotic t approximation.

Statistically significant correlation coefficients can be shown in boldface on the console when speci-
fying sig = TRUE. However, this option is not supported when using R Markdown, i.e., the argument
sig will switch to FALSE.

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, matrix or data frame specified in x (data), specification of func-
tion arguments (args), and list with results (result).

cor.matrix 47

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
John Wiley & Sons.

See Also

write.result, cohens.d, cor.cont, cor.cramer, multilevel.icc, cor.phi, multilevel.cor,
na.auxiliary, size.cor.

Examples

dat <- data.frame(group = c("a", "a", "a", "a", "a",
"b", "b", "b", "b", "b"),

x = c(5, NA, 6, 4, 6, 7, 9, 5, 8, 7),
y = c(3, 3, 5, 6, 7, 4, 7, NA, NA, 8),
z = c(1, 3, 1, NA, 2, 4, 6, 5, 9, 6))

Pearson product-moment correlation coefficient
cor.matrix(dat[, c("x", "y")])

Pearson product-moment correlation coefficient matrix using pairwise deletion
cor.matrix(dat[, c("x", "y", "z")])

Spearman's rank-order correlation matrix using pairwise deletion
cor.matrix(dat[, c("x", "y", "z")], method = "spearman")

Kendall's Tau-b correlation matrix using pairwise deletion
cor.matrix(dat[, c("x", "y", "z")], method = "kendall-b")

Kendall-Stuart's Tau-c correlation matrix using pairwise deletion
cor.matrix(dat[, c("x", "y", "z")], method = "kendall-c")

Pearson product-moment correlation coefficient matrix using pairwise deletion
highlight statistically significant result at alpha = 0.05
cor.matrix(dat[, c("x", "y", "z")], sig = TRUE)

Pearson product-moment correlation coefficient matrix using pairwise deletion
highlight statistically significant result at alpha = 0.10
cor.matrix(dat[, c("x", "y", "z")], sig = TRUE, alpha = 0.10)

Pearson product-moment correlation coefficient matrix using pairwise deletion,
print sample size and significance values
cor.matrix(dat[, c("x", "y", "z")], print = "all")

Pearson product-moment correlation coefficient matrix using listwise deletion,
print sample size and significance values
cor.matrix(dat[, c("x", "y", "z")], na.omit = TRUE, print = "all")

48 cor.phi

Pearson product-moment correlation coefficient matrix using listwise deletion,
print sample size and significance values with Bonferroni correction
cor.matrix(dat[, c("x", "y", "z")], na.omit = TRUE, print = "all", p.adj = "bonferroni")

Pearson product-moment correlation coefficient using pairwise deletion,
results for group "a" and "b" separately
cor.matrix(dat[, c("x", "y")], group = dat$group)

Pearson product-moment correlation coefficient matrix using pairwise deletion,
results for group "a" and "b" separately
cor.matrix(dat[, c("x", "y", "z")], group = dat$group, print = "all")

Not run:
Write Results into a Excel file
result <- cor.matrix(dat[, c("x", "y", "z")], print = "all", output = FALSE)
write.result(result, "Correlation.xlsx")
End(Not run)

cor.phi Phi Coefficient

Description

This function computes the (adjusted) Phi coefficient between two or more than two dichotomous
variables.

Usage

cor.phi(x, adjust = FALSE, tri = c("both", "lower", "upper"), digits = 2,
as.na = NULL, check = TRUE, output = TRUE)

Arguments

x a matrix or data frame.

adjust logical: if TRUE, phi coefficient is adjusted by relating the coefficient to the
possible maximum.

tri a character string or character vector indicating which triangular of the matrix to
show on the console, i.e., both for upper and lower triangular, lower (default)
for the lower triangular, and upper for the upper triangular.

digits an integer value indicating the number of decimal places digits to be used for
displaying phi coefficients.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

check logical: if TRUE, argument specification is checked.

output logical: if TRUE, output is shown on the console.

cor.phi 49

Details

The maximum Phi coefficient is determined by the distribution of the two variables, i.e., the Phi
coefficient cannot achieve the value of 1 in many cases. According to Cureton (1959), the’ phi
coefficient can be adjusted by relating the coefficient to the possible maximum, φ/φmax.

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, matrix or data frame specified in x (data), specification of func-
tion arguments (args), and list with results (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Cureton, E. E. (1959). Note on Phi/Phi max. Psychometrika, 24, 89-91.

Davenport, E. C., & El-Sanhurry, N. A. (1991). Phi/Phimax: Review and synthesis. Educational
and Psychological Measurement, 51, 821-828. https://doi.org/10.1177/001316449105100403

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
New York: John Wiley & Sons.

See Also

cor.matrix, cohens.d, cor.cont, cor.cramer, cor.poly.

Examples

dat <- data.frame(x1 = c(0, 1, 0, 1, 0, 1, 0, 1, 1, 0),
x2 = c(0, 1, 0, 0, 1, 1, 1, 1, 1, 1),
x3 = c(0, 1, 0, 1, 1, 1, 1, 1, 0, 0))

Phi coefficient between x1 and x2
cor.phi(dat[, c("x1", "x2")])

Adjusted phi coefficient between x1 and x2
cor.phi(dat[, c("x1", "x2")], adjust = TRUE)

Phi coefficient matrix between x1, x2, and x3
cor.phi(dat)

Adjusted phi coefficient matrix between x1, x2, and x3
cor.phi(dat, adjust = TRUE)

50 cor.poly

cor.poly Polychoric Correlation Matrix

Description

This function computes a polychoric correlation matrix, which is the estimated Pearson product-
moment correlation matrix between underlying normally distributed latent variables which generate
the ordinal scores.

Usage

cor.poly(x, smooth = TRUE, global = TRUE, weight = NULL, correct = 0,
progress = TRUE, na.rm = TRUE, delete = TRUE,
tri = c("both", "lower", "upper"), digits = 2, as.na = NULL,
check = TRUE, output = TRUE)

Arguments

x a matrix or data frame of discrete values.

smooth logical: if TRUE and if the polychoric matrix is not positive definite, a simple
smoothing algorithm using cor.smooth() function is applied.

global logical: if TRUE, the global values of the tau parameter is used instead of the
local values.

weight a vector of length of the number of observations that specifies the weights to
apply to each case. The NULL case is equivalent of weights of 1 for all cases.

correct a numeric value indicating the correction value to use to correct for continuity
in the case of zero entry. Note that unlike in the polychoric() function in the
psych the default value is 0.

progress logical: if TRUE, the progress bar is shown.

na.rm logical: if TRUE, missing data are deleted.

delete logical: if TRUE, cases with no variance are deleted with a warning before pro-
ceeding.

tri a character string indicating which triangular of the matrix to show on the con-
sole, i.e., both for upper and lower triangular, lower (default) for the lower
triangular, and upper for the upper triangular.

digits an integer value indicating the number of decimal places to be used for display-
ing correlation coefficients.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

check logical: if TRUE, argument specification is checked.

output logical: if TRUE, output is shown on the console.

crosstab 51

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, matrix or data frame specified in x (data), specification of func-
tion arguments (args), and list with results (result).

Note

This function is based on the polychoric() function in the psych package by William Revelle.

Author(s)

William Revelle

References

Revelle, W. (2018) psych: Procedures for personality and psychological research. Northwestern
University, Evanston, Illinois, USA, https://CRAN.R-project.org/package=psych Version = 1.8.12.

See Also

cor.matrix, cor.cont, cor.cramer, cor.phi, cohens.d.

Examples

dat <- data.frame(x1 = c(1, 1, 3, 2, 1, 2, 3, 2, 3, 1),
x2 = c(1, 2, 1, 1, 2, 2, 2, 1, 3, 1),
x3 = c(1, 3, 2, 3, 3, 1, 3, 2, 1, 2))

Polychoric correlation matrix
cor.poly(dat)

crosstab Cross Tabulation

Description

This function creates a two-way and three-way cross tabulation with absolute frequencies and row-
wise, column-wise and total percentages.

Usage

crosstab(x, print = c("no", "all", "row", "col", "total"), freq = TRUE,
split = FALSE, na.omit = TRUE, digits = 2, as.na = NULL,
check = TRUE, output = TRUE)

52 crosstab

Arguments

x a matrix or data frame with two or three columns.

print a character string or character vector indicating which percentage(s) to be printed
on the console, i.e., no percentages ("no") (default), all percentages ("all"),
row-wise percentages ("row"), column-wise percentages ("col"), and total per-
centages ("total").

freq logical: if TRUE, absolute frequencies will be included in the cross tabulation.

split logical: if TRUE, output table is split in absolute frequencies and percentage(s).

na.omit logical: if TRUE, incomplete cases are removed before conducting the analysis
(i.e., listwise deletion).

digits an integer indicating the number of decimal places digits to be used for display-
ing percentages.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

check logical: if TRUE, argument specification is checked.

output logical: if TRUE, output is printed on the console.

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), matrix or data frame specified in x (data), specification of function arguments (args),
and list with results (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

write.result, freq, descript, multilevel.descript, na.descript.

References

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
John Wiley & Sons.

Examples

dat <- data.frame(x1 = c(1, 2, 2, 1, 1, 2, 2, 1, 1, 2),
x2 = c(1, 2, 2, 1, 2, 1, 1, 1, 2, 1),
x3 = c(-99, 2, 1, 1, 1, 2, 2, 2, 2, 1))

Cross Tabulation for x1 and x2
crosstab(dat[, c("x1", "x2")])

Cross Tabulation for x1 and x2
print all percentages
crosstab(dat[, c("x1", "x2")], print = "all")

Cross Tabulation for x1 and x2

descript 53

print row-wise percentages
crosstab(dat[, c("x1", "x2")], print = "row")

Cross Tabulation for x1 and x2
print col-wise percentages
crosstab(dat[, c("x1", "x2")], print = "col")

Cross Tabulation x1 and x2
print total percentages
crosstab(dat[, c("x1", "x2")], print = "total")

Cross Tabulation for x1 and x2
print all percentages, split output table
crosstab(dat[, c("x1", "x2")], print = "all", split = TRUE)

Cross Tabulation for x1 and x3
do not apply listwise deletion, convert value -99 to NA
crosstab(dat[, c("x1", "x3")], na.omit = FALSE, as.na = -99)

Cross Tabulation for x1 and x3
print all percentages, do not apply listwise deletion, convert value -99 to NA
crosstab(dat[, c("x1", "x3")], print = "all", na.omit = FALSE, as.na = -99)

Cross Tabulation for x1, x2, and x3
crosstab(dat[, c("x1", "x2", "x3")])

Cross Tabulation for x1, x2, and x3
print all percentages
crosstab(dat[, c("x1", "x2", "x3")], print = "all")

Cross Tabulation for x1, x2, and x3
print all percentages, split output table
crosstab(dat[, c("x1", "x2", "x3")], print = "all", split = TRUE)

Not run:
Write Results into a Excel file
result <- crosstab(dat[, c("x1", "x2")], print = "all", output = FALSE)
write.result(result, "Crosstab.xlsx")
End(Not run)

descript Descriptive Statistics

Description

This function computes summary statistics for one or more variables, optionally by a grouping
and/or split variable.

54 descript

Usage

descript(x,
print = c("all", "n", "nNA", "pNA", "m", "se.m", "var", "sd", "min",

"p25", "med", "p75", "max", "range", "iqr", "skew", "kurt"),
group = NULL, split = NULL, sort.var = FALSE, na.omit = FALSE,
digits = 2, as.na = NULL, check = TRUE, output = TRUE)

Arguments

x a numeric vector, matrix or data frame with numeric variables, i.e., factors and
character variables are excluded from x before conducting the analysis.

print a character vector indicating which statistical measures to be printed on the con-
sole, i.e. n (number of observations), nNA (number of missing values), pNA
(percentage of missing values), m (arithmetic mean), se.m (standard error of
the arithmetic mean), var (variance), sd (standard deviation), med (median),min
(minimum), p25 (25th percentile, first quartile), p75 (75th percentile, third quar-
tile), max (maximum), range (range), iqr (interquartile range), skew (skew-
ness), and kurt (excess kurtosis). The default setting is print = ("n", "nNA",
"pNA", "m", "sd", "min", "max", "skew", "kurt").

group a numeric vector, character vector or factor as grouping variable.

split a numeric vector, character vector or factor as split variable.

sort.var logical: if TRUE, output table is sorted by variables when specifying group.

na.omit logical: if TRUE, incomplete cases are removed before conducting the analysis
(i.e., listwise deletion).

digits an integer value indicating the number of decimal places to be used.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to x, but not to group or split.

check logical: if TRUE, argument specification is checked.

output logical: if TRUE, output is shown on the console.

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, matrix or data frame specified in x (data), specification of func-
tion arguments (args), and list with results (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
John Wiley & Sons.

descript 55

See Also

ci.mean, ci.mean.diff, ci.median, ci.prop, ci.prop.diff, ci.var, ci.sd, freq, crosstab,
multilevel.descript, na.descript.

Examples

dat <- data.frame(group1 = c(1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2),
group2 = c(1, 1, 1, 2, 2, 2, 1, 1, 1, 2, 2, 2),
x1 = c(3, 1, 4, 2, 5, 3, 2, 4, NA, 4, 5, 3),
x2 = c(4, NA, 3, 6, 3, 7, 2, 7, 5, 1, 3, 6),
x3 = c(7, 8, 5, 6, 4, NA, 8, NA, 6, 5, 8, 6))

Descriptive statistics for x1
descript(dat$x1)

Descriptive statistics for x1, print results with 3 digits
descript(dat$x1, digits = 3)

Descriptive statistics for x1, convert value 4 to NA
descript(dat$x1, as.na = 4)

Descriptive statistics for x1, print all available statistical measures
descript(dat$x1, print = "all")

Descriptive statistics for x1, x2, and x3
descript(dat[, c("x1", "x2", "x3")])

Descriptive statistics for x1, x2, and x3,
listwise deletion for missing data
descript(dat[, c("x1", "x2", "x3")], na.omit = TRUE)

Descriptive statistics for x1, x2, and x3,
analysis by group1 separately
descript(dat[, c("x1", "x2", "x3")], group = dat$group1)

Descriptive statistics for x1, x2, and x3,
analysis by group1 separately, sort by variables
descript(dat[, c("x1", "x2", "x3")], group = dat$group1, sort.var = TRUE)

Descriptive statistics for x1, x2, and x3,
split analysis by group1
descript(dat[, c("x1", "x2", "x3")], split = dat$group1)

Descriptive statistics for x1, x2, and x3,
analysis by group1 separately, split analysis by group2
descript(dat[, c("x1", "x2", "x3")], group = dat$group1, split = dat$group2)

Not run:
Write Results into a Excel file
result <- descript(dat[, c("x1", "x2", "x3")], output = FALSE)
write.result(result, "Descript.xlsx")
End(Not run)

56 df.duplicated

df.duplicated Extract Duplicated or Unique Rows

Description

This function extracts duplicated or unique rows from a matrix or data frame.

Usage

df.duplicated(x, ..., first = TRUE, keep.all = TRUE,
from.last = FALSE, keep.row.names = TRUE,
check = TRUE)

df.unique(x, ..., keep.all = TRUE,
from.last = FALSE, keep.row.names = TRUE,
check = TRUE)

Arguments

x a matrix or data frame.

... a variable or multiple variables which are specified without quotes '' or double
quotes "" used to determine duplicated or unique rows. By default, all variables
in x are used.

first logical: if TRUE, the df.duplicated() function will return duplicated rows in-
cluding the first of identical rows.

keep.all logical: if TRUE, the function will return all variables in x after extracting dupli-
cated or unique rows based on the variables specified in the argument

from.last logical: if TRUE, duplication will be considered from the reversed side, i.e., the
last of identical rows would correspond to duplicated = FALSE. Note that this
argument is only used when first = FALSE.

keep.row.names logical: if TRUE, the row names from x are kept, otherwise they are set to NULL.

check logical: if TRUE, argument specification is checked.

Details

Note that df.unique(x) is equivalent to unique(x). That is, the main difference between the
df.unique() and the unique() function is that the df.unique() function provides the ... argu-
ment to specify a variable or multiple variables which are used to determine unique rows.

Value

Returns duplicated or unique rows of the matrix or data frame in x.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

df.duplicated 57

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

df.unique, df.merge, df.rbind, df.rename, df.sort

Examples

dat <- data.frame(x1 = c(1, 1, 2, 1, 4),
x2 = c(1, 1, 2, 1, 6),
x3 = c(2, 2, 3, 2, 6),
x4 = c(1, 1, 2, 2, 4),
x5 = c(1, 1, 4, 4, 3))

#--------------------------------------
df.duplicated() function

Extract duplicated rows based on all variables
df.duplicated(dat)

Extract duplicated rows based on x4
df.duplicated(dat, x4)

Extract duplicated rows based on x2 and x3
df.duplicated(dat, x2, x3)

Extract duplicated rows based on all variables
exclude first of identical rows
df.duplicated(dat, first = FALSE)

Extract duplicated rows based on x2 and x3
do not return all variables
df.duplicated(dat, x2, x3, keep.all = FALSE)

Extract duplicated rows based on x4
consider duplication from the reversed side
df.duplicated(dat, x4, first = FALSE, from.last = TRUE)

Extract duplicated rows based on x2 and x3
set row names to NULL
df.duplicated(dat, x2, x3, keep.row.names = FALSE)

#--------------------------------------
df.unique() function

Extract unique rows based on all variables
unique(dat)

Extract unique rows based on x4
df.unique(dat, x4)

58 df.merge

Extract unique rows based on x1, x2, and x3
df.unique(dat, x1, x2, x3)

Extract unique rows based on x2 and x3
do not return all variables
df.unique(dat, x2, x3, keep.all = FALSE)

Extract unique rows based on x4
consider duplication from the reversed side
df.unique(dat, x4, from.last = TRUE)

Extract unique rows based on x2 and x3
set row names to NULL
df.unique(dat, x2, x3, keep.row.names = FALSE)

df.merge Merge Multiple Data Frames

Description

This function merges data frames by a common column (i.e., matching variable).

Usage

df.merge(..., by, all = TRUE, check = TRUE, output = TRUE)

Arguments

... a sequence of matrices or data frames and/or matrices to be merged to one.

by a character string indicating the column used for merging (i.e., matching vari-
able), see ’Details’.

all logical: if TRUE, then extra rows with NAs will be added to the output for each
row in a data frame that has no matching row in another data frame.

check logical: if TRUE, argument specification is checked.

output logical: if TRUE, output is shown on the console.

Details

There are following requirements for merging multiple data frames: First, each data frame has the
same matching variable specified in the by argument. Second, matching variable in the data frames
have all the same class. Third, there are no duplicated values in the matching variable in each data
frame. Fourth, there are no missing values in the matching variables. Last, there are no duplicated
variable names across the data frames except for the matching variable.

Note that it is possible to specify data frames matrices and/or in the argument However, the
function always returns a data frame.

df.merge 59

Value

Returns a merged data frame.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

See Also

df.duplicated, df.unique, df.rbind, df.rename, df.sort

Examples

adat <- data.frame(id = c(1, 2, 3),
x1 = c(7, 3, 8))

bdat <- data.frame(id = c(1, 2),
x2 = c(5, 1))

cdat <- data.frame(id = c(2, 3),
y3 = c(7, 9))

ddat <- data.frame(id = 4,
y4 = 6)

Merge adat, bdat, cdat, and data by the variable id
df.merge(adat, bdat, cdat, ddat, by = "id")

Do not show output on the console
df.merge(adat, bdat, cdat, ddat, by = "id", output = FALSE)

Not run:
#--------------------------------------#'
Error messages

adat <- data.frame(id = c(1, 2, 3),
x1 = c(7, 3, 8))

bdat <- data.frame(code = c(1, 2, 3),
x2 = c(5, 1, 3))

cdat <- data.frame(id = factor(c(1, 2, 3)),
x3 = c(5, 1, 3))

ddat <- data.frame(id = c(1, 2, 2),
x2 = c(5, 1, 3))

edat <- data.frame(id = c(1, NA, 3),
x2 = c(5, 1, 3))

fdat <- data.frame(id = c(1, 2, 3),
x1 = c(5, 1, 3))

60 df.rbind

Error: Data frames do not have the same matching variable specified in 'by'.
df.merge(adat, bdat, by = "id")

Error: Matching variable in the data frames do not all have the same class.
df.merge(adat, cdat, by = "id")

Error: There are duplicated values in the matching variable specified in 'by'.
df.merge(adat, ddat, by = "id")

Error: There are missing values in the matching variable specified in 'by'.
df.merge(adat, edat, by = "id")

#' # Error: There are duplicated variable names across data frames.
df.merge(adat, fdat, by = "id")

End(Not run)

df.rbind Combine Data Frames by Rows, Filling in Missing Columns

Description

This function takes a sequence of data frames and combines them by rows, while filling in missing
columns with NAs.

Usage

df.rbind(...)

Arguments

... a sequence of data frame to be row bind together. This argument can be a list of
data frames, in which case all other arguments are ignored. Any NULL inputs are
silently dropped. If all inputs are NULL, the output is also NULL.

Details

This is an enhancement to rbind that adds in columns that are not present in all inputs, accepts a
sequence of data frames, and operates substantially faster.

Column names and types in the output will appear in the order in which they were encountered.

Unordered factor columns will have their levels unified and character data bound with factors will
be converted to character. POSIXct data will be converted to be in the same time zone. Array and
matrix columns must have identical dimensions after the row count. Aside from these there are no
general checks that each column is of consistent data type.

Value

Returns a single data frame

df.rename 61

Note

This function is a copy of the rbind.fill() function in the plyr package by Hadley Wickham.

Author(s)

Hadley Wickham

References

Wickham, H. (2011). The split-apply-combine strategy for data analysis. Journal of Statistical
Software, 40, 1-29. https://doi.org/10.18637/jss.v040.i01

Wickham, H. (2019). plyr: Tools for Splitting, Applying and Combining Data. R package version
1.8.5.

See Also

df.duplicated, df.unique, df.merge, df.rename, df.sort

Examples

adat <- data.frame(id = c(1, 2, 3),
a = c(7, 3, 8),
b = c(4, 2, 7))

bdat <- data.frame(id = c(4, 5, 6),
a = c(2, 4, 6),
c = c(4, 2, 7))

cdat <- data.frame(id = c(7, 8, 9),
a = c(1, 4, 6),
d = c(9, 5, 4))

df.rbind(adat, bdat, cdat)

df.rename Rename Columns in a Matrix or Variables in a Data Frame

Description

This function renames columns in a matrix or variables in a data frame by specifying a character
string or character vector indicating the columns or variables to be renamed and a character string
or character vector indicating the corresponding replacement values.

Usage

df.rename(x, from, to, check = TRUE)

62 df.sort

Arguments

x a matrix or data frame.

from a character string or character vector indicating the column(s) or variable(s) to
be renamed.

to a character string or character vector indicating the corresponding replacement
values for the column(s) or variable(s) specified in the argument name.

check logical: if TRUE, argument specification is checked.

Value

Returns a matrix or data frame with renamed columns or variables.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

See Also

df.duplicated, df.unique, df.merge, df.rbind, df.sort

Examples

dat <- data.frame(a = c(3, 1, 6),
b = c(4, 2, 5),
c = c(7, 3, 1))

Rename variable b in the data frame 'dat' to y
df.rename(dat, from = "b", to = "y")

Rename variable a, b, and c in the data frame 'dat' to x, y, and z
df.rename(dat, from = c("a", "b", "c"), to = c("x", "y", "z"))

df.sort Data Frame Sorting

Description

This function arranges a data frame in increasing or decreasing order according to one or more
variables.

Usage

df.sort(x, ..., decreasing = FALSE, check = TRUE)

df.sort 63

Arguments

x a data frame.

... a sorting variable or a sequence of sorting variables which are specified without
quotes '' or double quotes "".

decreasing logical: if TRUE, the sort is decreasing.

check logical: if TRUE, argument specification is checked.

Value

Returns data frame x sorted according to the variables specified in ..., a matrix will be coerced to
a data frame.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Knuth, D. E. (1998) The Art of Computer Programming, Volume 3: Sorting and Searching (2nd
ed.). Addison-Wesley.

See Also

df.duplicated, df.unique, df.merge, df.rbind, df.rename

Examples

dat <- data.frame(x = c(5, 2, 5, 5, 7, 2),
y = c(1, 6, 2, 3, 2, 3),
z = c(2, 1, 6, 3, 7, 4))

Sort data frame 'dat' by "x" in increasing order
df.sort(dat, x)

Sort data frame 'dat' by "x" in decreasing order
df.sort(dat, x, decreasing = TRUE)

Sort data frame 'dat' by "x" and "y" in increasing order
df.sort(dat, x, y)

Sort data frame 'dat' by "x" and "y" in decreasing order
df.sort(dat, x, y, decreasing = TRUE)

64 dummy.c

dummy.c Dummy Coding

Description

This function creates k − 1 dummy coded 0/1 variables for a vector with k distinct values.

Usage

dummy.c(x, ref = NULL, names = "d", as.na = NULL, check = TRUE)

Arguments

x a numeric vector with integer values, character vector or factor.

ref a numeric value or character string indicating the reference group. By default,
the last category is selected as reference group.

names a character string or character vector indicating the names of the dummy vari-
ables. By default, variables are named "d" with the category compared to the
reference category (e.g., "d1" and "d2"). Variable names can be specified using
a character string (e.g., names = "dummy_" leads to dummy_1 and dummy_2) or a
character vector matching the number of dummy coded variables (e.g. names =
c("x.3_1", "x.3_2")) which is the number of unique categories minus one.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

check logical: if TRUE, argument specification is checked.

Value

Returns a matrix with k - 1 dummy coded 0/1 variables.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
New York: John Wiley & Sons.

Examples

dat <- data.frame(x = c(1, 1, 1, 2, 2, 2, 3, 3, 3),
y = c("a", "a", "a", "b", "b", "b", "c", "c", "c"),
z = factor(c("B", "B", "B", "A", "A", "A", "C", "C", "C")),
stringsAsFactors = FALSE)

Dummy coding of a numeric variable, reference = 3

eta.sq 65

dummy.c(dat$x)

Dummy coding of a numeric variable, reference = 1
dummy.c(dat$x, ref = 1)

Dummy coding of a numeric variable, reference = 3
assign user-specified variable names
dummy.c(dat$x, names = c("x.3_1", "x.3_2"))

Dummy coding of a numeric variable, reference = 3
assign user-specified variable names and attach to the data frame
dat <- data.frame(dat, dummy.c(dat$x, names = c("x.3_1", "x.3_2")), stringsAsFactors = FALSE)

Dummy coding of a character variable, reference = "c"
dummy.c(dat$y)

Dummy coding of a character variable, reference = "a"
dummy.c(dat$y, ref = "a")

Dummy coding of a numeric variable, reference = "c"
assign user-specified variable names
dummy.c(dat$y, names = c("y.c_a", "y.c_b"))

Dummy coding of a character variable, reference = "c"
assign user-specified variable names and attach to the data frame
dat <- data.frame(dat, dummy.c(dat$y, names = c("y.c_a", "y.c_b")), stringsAsFactors = FALSE)

Dummy coding of a factor, reference = "C"
dummy.c(dat$z)

Dummy coding of a factor, reference = "A"
dummy.c(dat$z, ref = "A")

Dummy coding of a numeric variable, reference = "C"
assign user-specified variable names
dummy.c(dat$z, names = c("z.C_A", "z.C_B"))

Dummy coding of a factor, reference = "C"
assign user-specified variable names and attach to the data frame
dat <- data.frame(dat, dummy.c(dat$z, names = c("z.C_A", "z.C_B")), stringsAsFactors = FALSE)

eta.sq Eta Squared

Description

This function computes eta squared for one or more outcome variables in combination with one or
more grouping variables.

66 eta.sq

Usage

eta.sq(x, group, digits = 2, as.na = NULL, check = TRUE, output = TRUE)

Arguments

x a numeric vector, matrix or data frame with numeric vectors for the outcome
variables.

group a vector, matrix or data frame with integer vectors, character vectors or factors
for the grouping variables.

digits an integer value indicating the number of decimal places to be used for display-
ing eta squared.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to the argument x.

check logical: if TRUE, argument specification is checked.

output logical: if TRUE, output is shown on the console.

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), matrix or data frame specified in x (data), specification of function arguments (args),
and list with results (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
New York: John Wiley & Sons.

See Also

cohens.d, cor.cont, cor.matrix, cor.cramer, cor.phi

Examples

dat <- data.frame(x1 = c(1, 1, 1, 1, 2, 2, 2, 2, 2),
x2 = c(1, 1, 1, 2, 2, 2, 3, 3, 3),
y1 = c(3, 2, 4, 5, 6, 4, 7, 5, 7),
y2 = c(2, 4, 1, 5, 3, 3, 4, 6, 7))

Eta squared for y1 explained by x1
eta.sq(dat$y1, group = dat$x1)

Eta squared for y1 and y2 explained by x1 and x2
eta.sq(dat[, c("y1", "y2")], group = dat[, c("x1", "x2")])

freq 67

freq Frequency Table

Description

This function computes a frequency table with absolute and percentage frequencies for one or more
than one variable.

Usage

freq(x, print = c("no", "all", "perc", "v.perc"), freq = TRUE, split = FALSE,
labels = TRUE, val.col = FALSE, round = 3, exclude = 15, digits = 2,
as.na = NULL, check = TRUE, output = TRUE)

Arguments

x a vector, factor, matrix or data frame.

print a character string indicating which percentage(s) to be printed on the console,
i.e., no percentages ("no"), all percentages ("all"), percentage frequencies
("print"), and valid percentage frequencies ("v.perc"). Default setting when
specifying one variable in x is print = "all", while default setting when spec-
ifying more than one variable in x is print = "no" unless split = TRUE.

freq logical: if TRUE (default), absolute frequencies will be shown on the console.

split logical: if TRUE, output table is split by variables when specifying more than one
variable in x.

labels logical: if TRUE (default), labels for the factor levels will be used.

val.col logical: if TRUE, values are shown in the columns, variables in the rows.

round an integer value indicating the number of decimal places to be used for rounding
numeric variables.

exclude an integer value indicating the maximum number of unique values for variables
to be included in the analysis when specifying more than one variable in x i.e.,
variables with the number of unique values exceeding exclude will be excluded
from the analysis. It is also possible to specify exclude = FALSE to include all
variables in the analysis.

digits an integer value indicating the number of decimal places to be used for display-
ing percentages.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

check logical: if TRUE, argument specification is checked.

output logical: if TRUE, output is shown on the console.

68 freq

Details

By default, the function displays the absolute and percentage frequencies when specifying one
variable in the argument x, while the function displays only the absolute frequencies when more than
one variable is specified. The function displays valid percentage frequencies only in the presence
of missing values and excludes variables with all values missing from the analysis. Note that it is
possible to mix numeric variables, factors, and character variables in the data frame specified in
the argument x. By default, numeric variables are rounded to three digits before computing the
frequency table.

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis (type), matrix or data frame specified in x (data), specification of function
arguments (args), and list with results (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Becker, R. A., Chambers, J. M., & Wilks, A. R. (1988). The New S Language. Wadsworth &
Brooks/Cole.

See Also

write.result, crosstab, descript, multilevel.descript, na.descript.

Examples

dat <- data.frame(x1 = c(3, 3, 2, 3, 2, 3, 3, 2, 1, -99),
x2 = c(2, 2, 1, 3, 1, 1, 3, 3, 2, 2),
y1 = c(1, 4, NA, 5, 2, 4, 3, 5, NA, 1),
y2 = c(2, 3, 4, 3, NA, 4, 2, 3, 4, 5),
z = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10))

Frequency table for one variable
freq(dat$x1)

Frequency table for one variable,
values shown in columns
freq(dat$x1, val.col = TRUE)

Frequency table for one variable,
convert value -99 into NA
freq(dat$x1, as.na = -99)

Frequency table for one variable
use 3 digit for displaying percentages
freq(dat$x1, digits = 3)

indirect 69

Frequency table for more than one variable
freq(dat[, c("x1", "x2", "y1", "y2")])

Frequency table for more than one variable,
values shown in columns
freq(dat[, c("x1", "x2", "y1", "y2")], val.col = TRUE)

Frequency table for more than one variable,
with percentage frequencies
freq(dat[, c("x1", "x2", "y1", "y2")], print = "all")

Frequency table for more than one variable,
with percentage frequencies, values shown in columns
freq(dat[, c("x1", "x2", "y1", "y2")], print = "all", val.col = TRUE)

Frequency table for more than one variable,
split output table
freq(dat[, c("x1", "x2", "y1", "y2")], split = TRUE)

Frequency table for more than one variable,
exclude variables with more than 5 unique values
freq(dat, exclude = 5)

Frequency table for a factor
freq(factor(c("a", "a", "b", "c", "b")))

Frequency table for one variable,
do not use labels of the factor levels
freq(factor(c("a", "a", "b", "c", "b")), labels = FALSE)

Not run:
Write Results into a Excel file
result <- freq(dat[, c("x1", "x2", "y1", "y2")], split = TRUE, output = FALSE)
write.result(result, "Frequencies.xlsx")
End(Not run)

indirect Confidence Intervals for the Indirect Effect

Description

This function computes confidence intervals for the indirect effect based on the asymptotic normal
method, distribution of the product method and the Monte Carlo method. By default, the function
uses the distribution of the product method for computing the two-sided 95% asymmetric confi-
dence intervals for the indirect effect product of coefficient estimator âb̂.

Usage

indirect(a, b, se.a, se.b, print = c("all", "asymp", "dop", "mc"),
se = c("sobel", "aroian", "goodman"), nrep = 100000,

70 indirect

alternative = c("two.sided", "less", "greater"),
seed = NULL, conf.level = 0.95, digits = 3, check = TRUE,
output = TRUE)

Arguments

a a numeric value indicating the coefficient a, i.e., effect of X on M .

b a numeric value indicating the coefficient b, i.e., effect of M on Y adjusted for
X .

se.a a positive numeric value indicating the standard error of a.

se.b a positive numeric value indicating the standard error of b.

print a character string or character vector indicating which confidence intervals (CI)
to show on the console, i.e. "all" for all CIs, "asymp" for the CI based on the
asymptotic normal method, "dop" (default) for the CI based on the distribution
of the product method, and "mc" for the CI based on the Monte Carlo method.

se a character string indicating which standard error (SE) to compute for the asymp-
totic normal method, i.e., "sobel" for the approximate standard error by Sobel
(1982) using the multivariate delta method based on a first order Taylor series
approximation, "aroian" (default) for the exact standard error by Aroian (1947)
based on a first and second order Taylor series approximation, and "goodman"
for the unbiased standard error by Goodman (1960).

nrep an integer value indicating the number of Monte Carlo repetitions.

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less".

seed a numeric value specifying the seed of the random number generator when using
the Monte Carlo method.

conf.level a numeric value between 0 and 1 indicating the confidence level of the interval.

digits an integer value indicating the number of decimal places to be used for display-
ing

check logical: if TRUE, argument specification is checked.

output logical: if TRUE, output is shown on the console.

Details

In statistical mediation analysis (MacKinnon & Tofighi, 2013), the indirect effect refers to the effect
of the independent variable X on the outcome variable Y transmitted by the mediator variable M .
The magnitude of the indirect effect ab is quantified by the product of the the coefficient a (i.e.,
effect of X on M) and the coefficient b (i.e., effect of M on Y adjusted for X). In practice,
researchers are often interested in confidence limit estimation for the indirect effect. This function
offers three different methods for computing the confidence interval for the product of coefficient
estimator âb̂:

(1) Asymptotic normal method
In the asymptotic normal method, the standard error for the product of the coefficient estimator âb̂
is computed which is used to create a symmetrical confidence interval based on the z-value of the
standard normal (z) distribution assuming that the indirect effect is normally distributed. Note that

indirect 71

the function provides three formulas for computing the standard error by specifying the argument
se:

"sobel" Approximate standard error by Sobel (1982) using the multivariate delta method based
on a first order Taylor series approximation:√

(a2σ2
a + b2σ2

b)

"aroian" Exact standard error by Aroian (1947) based on a first and second order Taylor series
approximation: √

(a2σ2
a + b2σ2

b + σ2
aσ

2
b)

"goodman" Unbiased standard error by Goodman (1960):√
(a2σ2

a + b2σ2
b − σ2

aσ
2
b)

Note that the unbiased standard error is often negative and is hence undefined for zero or small
effects or small sample sizes.

The asymptotic normal method is known to have low statistical power because the distribution of
the product âb̂ is not normally distributed. (Kisbu-Sakarya, MacKinnon, & Miocevic, 2014). In
the null case, where both random variables have mean equal to zero, the distribution is symmetric
with kurtosis of six. When the product of the means of the two random variables is nonzero, the
distribution is skewed (up to a maximum value of± 1.5) and has a excess kurtosis (up to a maximum
value of 6). However, the product approaches a normal distribution as one or both of the ratios of
the means to standard errors of each random variable get large in absolute value (MacKinnon,
Lockwood & Williams, 2004).

(2) Distribution of the product method
The distribution of the product method (MacKinnon et al., 2002) relies on an analytical approxima-
tion of the distribution of the product of two normally distributed variables. The method uses the
standardized a and b coefficients to compute ab and then uses the critical values for the distribution
of the product (Meeker, Cornwell, & Aroian, 1981) to create asymmetric confidence intervals. The
distribution of the product approaches the gamma distribution (Aroian, 1947). The analytical so-
lution for the distribution of the product is provided by the Bessel function used to the solution of
differential equations and is approximately proportional to the Bessel function of the second kind
with a purely imaginary argument (Craig, 1936).

(3) Monte Carlo method
The Monte Carlo (MC) method (MacKinnon et al., 2004) relies on the assumption that the pa-
rameters a and b have a joint normal sampling distribution. Based on the parametric assumption,
a sampling distribution of the product ab using random samples with population values equal to
the sample estimates â, b̂, σ̂a, and σ̂b is generated. Percentiles of the sampling distribution are
identified to serve as limits for a 100(1 − α)% asymmetric confidence interval about the sample
âb̂ (Preacher & Selig, 2012). Note that parametric assumptions are invoked for â and b̂, but no
parametric assumptions are made about the distribution of âb̂.

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis (type), list with the input specified in a b, se.a, and se.b (data), specifi-
cation of function arguments (args), and a list with the result tables (result).

72 indirect

Note

The function was adapted from the medci() function in the RMediation package by Davood
Tofighi and David P. MacKinnon (2016).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Aroian, L. A. (1947). The probability function of the product of two normally distributed variables.
Annals of Mathematical Statistics, 18, 265-271. https://doi.org/10.1214/aoms/1177730442

Craig,C.C. (1936). On the frequency function of xy. Annals of Mathematical Statistics, 7, 1–15.
https://doi.org/10.1214/aoms/1177732541

Goodman, L. A. (1960). On the exact variance of products. Journal of the American Statistical
Association, 55, 708-713. https://doi.org/10.1080/01621459.1960.10483369

Kisbu-Sakarya, Y., MacKinnon, D. P., & Miocevic M. (2014). The distribution of the product ex-
plains normal theory mediation confidence interval estimation. Multivariate Behavioral Research,
49, 261–268. https://doi.org/10.1080/00273171.2014.903162

MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., & Sheets, V. (2002). Comparison
of methods to test mediation and other intervening variable effects. Psychological Methods, 7,
83–104. https://doi.org/10.1037/1082-989x.7.1.83

MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence limits for the indirect
effect: Distribution of the product and resampling methods. Multivariate Behavioral Research, 39,
99-128. https://doi.org/10.1207/s15327906mbr3901_4

MacKinnon, D. P., & Tofighi, D. (2013). Statistical mediation analysis. In J. A. Schinka, W. F.
Velicer, & I. B. Weiner (Eds.), Handbook of psychology: Research methods in psychology (pp.
717-735). John Wiley & Sons, Inc..

Meeker, W. Q., Jr., Cornwell, L. W., & Aroian, L. A. (1981). The product of two normally dis-
tributed random variables. In W. J. Kennedy & R. E. Odeh (Eds.), Selected tables in mathematical
statistics (Vol. 7, pp. 1–256). Providence, RI: American Mathematical Society.

Preacher, K. J., & Selig, J. P. (2012). Advantages of Monte Carlo confidence intervals for indirect
effects. Communication Methods and Measures, 6, 77–98. http://dx.doi.org/10.1080/19312458.2012.679848

Sobel, M. E. (1982). Asymptotic confidence intervals for indirect effects in structural equation
models. In S. Leinhardt (Ed.), Sociological methodology 1982 (pp. 290-312). Washington, DC:
American Sociological Association.

Tofighi, D. & MacKinnon, D. P. (2011). RMediation: An R package for mediation analysis con-
fidence intervals. Behavior Research Methods, 43, 692-700. https://doi.org/10.3758/s13428-011-
0076-x

See Also

multilevel.indirect

item.alpha 73

Examples

Distribution of the Product Method
indirect(a = 0.35, b = 0.27, se.a = 0.12, se.b = 0.18)

Monte Carlo Method
indirect(a = 0.35, b = 0.27, se.a = 0.12, se.b = 0.18, print = "mc")

Asymptotic Normal Method
indirect(a = 0.35, b = 0.27, se.a = 0.12, se.b = 0.18, print = "asymp")

item.alpha Coefficient Alpha and Item Statistics

Description

This function computes point estimate and confidence interval for the (ordinal) coefficient alpha
(aka Cronbach’s alpha) along with the corrected item-total correlation and coefficient alpha if item
deleted.

Usage

item.alpha(x, exclude = NULL, std = FALSE, ordered = FALSE, na.omit = FALSE,
print = c("all", "alpha", "item"), digits = 2, conf.level = 0.95,
as.na = NULL, check = TRUE, output = TRUE)

Arguments

x a matrix, data frame, variance-covariance or correlation matrix. Note that raw
data is needed to compute ordinal coefficient alpha, i.e., ordered = TRUE.

exclude a character vector indicating items to be excluded from the analysis.

std logical: if TRUE, the standardized coefficient alpha is computed.

ordered logical: if TRUE, variables are treated as ordered (ordinal) variables to compute
ordinal coefficient alpha.

na.omit logical: if TRUE, incomplete cases are removed before conducting the analysis
(i.e., listwise deletion); if FALSE (default), pairwise deletion is used.

print a character vector indicating which results to show, i.e. "all" (default), for all
results "alpha" for the coefficient alpha, and "item" for item statistics.

digits an integer value indicating the number of decimal places to be used for display-
ing coefficient alpha and item-total correlations.

conf.level a numeric value between 0 and 1 indicating the confidence level of the interval.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

check logical: if TRUE, argument specification is checked.

output logical: if TRUE, output is shown.

74 item.alpha

Details

Ordinal coefficient alpha was introduced by Zumbo, Gadermann and Zeisser (2007) which is ob-
tained by applying the formula for computing coefficient alpha to the polychoric correlation ma-
trix instead of the variance-covariance or product-moment correlation matrix. Note that Chalmers
(2018) highlighted that the ordinal coefficient alpha should be interpreted only as a hypothetical
estimate of an alternative reliability, whereby a test’s ordinal categorical response options have be
modified to include an infinite number of ordinal response options and concludes that coefficient
alpha should not be reported as a measure of a test’s reliability. However, Zumbo and Kroc (2019)
argued that Chalmers’ critique of ordinal coefficient alpha is unfounded and that ordinal coefficient
alpha may be the most appropriate quantifier of reliability when using Likert-type measurement to
study a latent continuous random variable.

Confidence intervals are computed using the procedure by Feldt, Woodruff and Salih (1987). When
computing confidence intervals using pairwise deletion, the average sample size from all pairwise
samples is used. Note that there are at least 10 other procedures for computing the confidence
interval (see Kelley and Pornprasertmanit, 2016), which are implemented in the ci.reliability()
function in the MBESSS package by Ken Kelley (2019).

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, matrix or data frame specified in x (data), specification of func-
tion arguments (args), and list with results (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Chalmers, R. P. (2018). On misconceptions and the limited usefulness of ordinal alpha. Educational
and Psychological Measurement, 78, 1056-1071. https://doi.org/10.1177/0013164417727036

Cronbach, L.J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16,
297-334. https://doi.org/10.1007/BF02310555

Cronbach, L.J. (2004). My current thoughts on coefficient alpha and successor procedures. Educa-
tional and Psychological Measurement, 64, 391-418. https://doi.org/10.1177/0013164404266386

Feldt, L. S., Woodruff, D. J., & Salih, F. A. (1987). Statistical inference for coefficient alpha.
Applied Psychological Measurement, 11 93-103. https://doi.org/10.1177/014662168701100107

Kelley, K., & Pornprasertmanit, S. (2016). Confidence intervals for population reliability coeffi-
cients: Evaluation of methods, recommendations, and software for composite measures. Psycho-
logical Methods, 21, 69-92. https://doi.org/10.1037/a0040086.

Ken Kelley (2019). MBESS: The MBESS R Package. R package version 4.6.0. https://CRAN.R-
project.org/package=MBESS

Zumbo, B. D., & Kroc, E. (2019). A measurement is a choice and Stevens’ scales of measurement
do not help make it: A response to Chalmers. Educational and Psychological Measurement, 79,
1184-1197. https://doi.org/10.1177/0013164419844305

item.alpha 75

Zumbo, B. D., Gadermann, A. M., & Zeisser, C. (2007). Ordinal versions of coefficients al-
pha and theta for Likert rating scales. Journal of Modern Applied Statistical Methods, 6, 21-29.
https://doi.org/10.22237/jmasm/1177992180

See Also

write.result, item.cfa, item.omega, item.reverse, item.scores

Examples

dat <- data.frame(item1 = c(4, 2, 3, 4, 1, 2, 4, 2),
item2 = c(4, 3, 3, 3, 2, 2, 4, 1),
item3 = c(3, 2, 4, 2, 1, 3, 4, 1),
item4 = c(4, 1, 2, 3, 2, 3, 4, 2))

Compute unstandardized coefficient alpha and item statistics
item.alpha(dat)

Compute standardized coefficient alpha and item statistics
item.alpha(dat, std = TRUE)

Compute unstandardized coefficient alpha
item.alpha(dat, print = "alpha")

Compute item statistics
item.alpha(dat, print = "item")

Compute unstandardized coefficient alpha and item statistics while excluding item3
item.alpha(dat, exclude = "item3")

Compute variance-covariance matrix
dat.cov <- cov(dat)
Compute unstandardized coefficient alpha based on the variance-covariance matrix
item.alpha(dat.cov)

Compute correlation matrix
dat.cor <- cor(dat)
Compute standardized coefficient alpha based on the correlation matrix
item.alpha(dat.cor)

Compute ordinal coefficient alpha
item.alpha(dat, ordered = TRUE)

Not run:
Write Results into a Excel file
result <- item.alpha(dat, output = FALSE)
write.result(result, "Alpha.xlsx")
End(Not run)

76 item.cfa

item.cfa Confirmatory Factor Analysis

Description

This function is a wrapper function for conducting confirmatory factor analysis with continuous
and/or ordered-categorical indicators by calling the cfa function in the R package lavaan.

Usage

item.cfa(x, model = NULL, rescov = NULL, hierarch = FALSE,
meanstructure = TRUE, ident = c("marker", "var", "effect"),
parameterization = c("delta", "theta"), ordered = NULL, cluster = NULL,
estimator = c("ML", "MLM", "MLMV", "MLMVS", "MLF", "MLR",

"GLS", "WLS", "DWLS", "WLSM", "WLSMV",
"ULS", "ULSM", "ULSMV", "DLS", "PML"),

missing = c("listwise", "pairwise", "fiml",
"two.stage", "robust.two.stage", "doubly.robust"),

print = c("all", "summary", "coverage", "descript", "fit", "est", "modind"),
min.value = 10, digits = 3, p.digits = 3, as.na = NULL,
check = TRUE, output = TRUE)

Arguments

x a matrix or data frame. If model = NULL, confirmatory factor analysis based on
a measurement model with one factor labeled f comprising all variables in the
matrix or data frame is conducted. Note that the cluster variable is excluded
from x when specifying cluster. If model is specified, the matrix or data frame
needs to contain all variables used in the argument model and the cluster variable
when specifying cluster.

model a character vector specifying a measurement model with one factor, or a list of
character vectors for specifying a measurement model with more than one factor,
e.g., model = c("x1", "x2", "x3", "x4") for specifying a measurement model
with one factor labeled f comprising four indicators, or model = list(factor1
= c("x1", "x2", "x3", "x4"),factor2 = c("x5", "x6", "x7", "x8")) for spec-
ifying a measurement model with two latent factors labeled factor1 and factor2
each comprising four indicators. Note that the name of each list element is used
to label factors, i.e., all list elements need to be named, otherwise factors are
labeled with "f1", "f2", "f3" and so on.

rescov a character vector or a list of character vectors for specifying residual covari-
ances, e.g. rescov = c("x1", "x2") for specifying a residual covariance be-
tween items x1 and x2, or rescov = list(c("x1", "x2"), c("x3", "x4"))
for specifying residual covariances between items x1 and x2, and items x3 and
x4.

hierarch logical: if TRUE, a second-order factor model is specified given at least three
first-order factors were specified in model. Note that it is not possible to specify
more than one second-order factor.

item.cfa 77

meanstructure logical: if TRUE (default), intercept/means of observed variables means of latent
variables will be added to the model. Note that meanstructure = FALSE is only
applicable when the missing is listwise, pairwise, or doubly-robust.

ident a character string indicating the method used for identifying and scaling latent
variables, i.e., "marker" for the marker variable method fixing the first factor
loading of each latent variable to 1, "var" for the fixed variance method fixing
the variance of each latent variable to 1, or "effect" for the effects-coding
method using equality constraints so that the average of the factor loading for
each latent variable equals 1. By default, fixed variance method is used when
hierarch = FALSE, whereas marker variable method is used when hierarch =
TRUE.

parameterization

a character string indicating the method used for identifying and scaling latent
variables when indicators are ordered, i.e., "delta" (default) for delta parame-
terization and "theta" for theta parameterization.

ordered if NULL (default), all indicators of the measurement model are treated as contin-
uous. If TRUE, all indicators of the measurement model are treated as ordered
(ordinal). Alternatively, a character vector indicating which variables to treat as
ordered (ordinal) variables can be specified.

cluster either a character string indicating the variable name of the cluster variable in
’x’ or a vector representing the nested grouping structure (i.e., group or cluster
variable) for computing cluster-robust standard errors. Note that cluster-robust
standard errors are not available when treating indicators of the measurement
model as ordered (ordinal).

estimator a character string indicating the estimator to be used (see ’Details’). By de-
fault, "MLR" is used for CFA models with continuous indicators (i.e., ordered =
FALSE) and "WLSMV" is used for CFA model with ordered-categorical indicators
(i.e., ordered = TRUE).

missing a character string indicating how to deal with missing data, i.e., "listwise"
for listwise deletion, "pairwise" for pairwise deletion, "fiml" for full in-
formation maximum likelihood method, two.stage for two-stage maximum
likelihood method, robust.two.stage for robust two-stage maximum likeli-
hood method, and doubly-robust for doubly-robust method (see ’Details’).
By default, "fiml" is used for CFA models with continuous indicators which
are estimated by using estimator = "MLR", and "pairwise" for CFA models
with ordered-categorical indicators which are estimated by using estimator =
"pairwise" by default.

print a character string or character vector indicating which results to show on the
console, i.e. "all" for all results, "summary" for a summary of the specifica-
tion of the estimation method and missing data handling in lavaan, "coverage"
for the variance-covariance coverage of the data, "descript" for descriptive
statistics, "fit" for model fit, "est" for parameter estimates, and "modind" for
modification indices. By default, a summary of the specification, model fit, and
parameter estimates are printed.

min.value numeric value to filter modification indices and only show modifications with a
modification index value equal or higher than this minimum value. By default,
modification indices equal or higher 10 is printed.

78 item.cfa

digits an integer value indicating the number of decimal places to be used for display-
ing results.

p.digits an integer value indicating the number of decimal places to be used for display-
ing the p-value.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to x but not to cluster.

check logical: if TRUE, argument specification is checked.

output logical: if TRUE, output is shown.

Details

Estimator The R package lavaan provides seven estimators that affect the estimation, namely
"ML", "GLS", "WLS", "DWLS", "ULS", "DLS", and "PML". All other options for the argument
estimator combine these estimators with various standard error and chi-square test statistic
computation. Note that the estimators also differ in how missing values can be dealt with (e.g.,
listwise deletion, pairwise deletion, or full information maximum likelihood, FIML).

• "ML": Maximum likelihood with conventional standard errors and conventional test statis-
tic. For both complete and incomplete data using pairwise deletion or FIML.

• "MLM": Maximum likelihood parameter estimates with conventional robust standard er-
rors and a Satorra-Bentler scaled test statistic that are robust to non-normality. For com-
plete data only.

• "MLMV": Maximum likelihood parameter estimates with conventional robust standard er-
rors and a mean and a variance adjusted test statistic using a scale-shifted approach that
are robust to non-normality. For complete data only.

• "MLMVS": Maximum likelihood parameter estimates with conventional robust standard
errors and a mean and a variance adjusted test statistic using the Satterthwaite approach
that are robust to non-normality. For complete data only.

• "MLF": Maximum likelihood parameter estimates with standard errors approximated by
first-order derivatives and conventional test statistic. For both complete and incomplete
data using pairwise deletion or FIML.

• "MLR": Maximum likelihood parameter estimates with Huber-White robust standard er-
rors a test statistic which is asymptotically equivalent to the Yuan-Bentler T2* test statis-
tic that are robust to non-normality and non-independence of observed when specifying
a cluster variable using the argument cluster. For both complete and incomplete data
using pairwise deletion or FIML.

• "GLS": Generalized least squares parameter estimates with conventional standard errors
and conventional test statistic that uses a normal-theory based weight matrix. For com-
plete data only. and conventional chi-square test. For both complete and incomplete data.

• "WLS": Weighted least squares parameter estimates (sometimes called ADF estimation)
with conventional standard errors and conventional test statistic that uses a full weight
matrix. For complete data only.

• "DWLS": Diagonally weighted least squares parameter estimates which uses the diagonal
of the weight matrix for estimation with conventional standard errors and conventional
test statistic. For both complete and incomplete data using pairwise deletion.

item.cfa 79

• "WLSM": Diagonally weighted least squares parameter estimates which uses the diagonal
of the weight matrix for estimation, but uses the full weight matrix for computing the
conventional robust standard errors and a Satorra-Bentler scaled test statistic. For both
complete and incomplete data using pairwise deletion.

• "WLSMV": Diagonally weighted least squares parameter estimates which uses the diagonal
of the weight matrix for estimation, but uses the full weight matrix for computing the
conventional robust standard errors and a mean and a variance adjusted test statistic using
a scale-shifted approach. For both complete and incomplete data using pairwise deletion.

• "ULS": Unweighted least squares parameter estimates with conventional standard errors
and conventional test statistic. For both complete and incomplete data using pairwise
deletion.

• "ULSM": Unweighted least squares parameter estimates with conventional robust standard
errors and a Satorra-Bentler scaled test statistic. For both complete and incomplete data
using pairwise deletion.

• "ULSMV": Unweighted least squares parameter estimates with conventional robust stan-
dard errors and a mean and a variance adjusted test statistic using a scale-shifted approach.
For both complete and incomplete data using pairwise deletion.

• "DLS": Distributionally-weighted least squares parameter estimates with conventional
robust standard errors and a Satorra-Bentler scaled test statistic. For complete data only.

• "PML": Pairwise maximum likelihood parameter estimates with Huber-White robust stan-
dard errors and a mean and a variance adjusted test statistic using the Satterthwaite ap-
proach. For both complete and incomplete data using pairwise deletion.

Missing Data The R package lavaan provides six methods for dealing with missing data:

• "listwise": Listwise deletion, i.e., all cases with missing values are removed from the
data before conducting the analysis. This is only valid if the data are missing completely
at random (MCAR).

• "pairwise": Pairwise deletion, i.e., each element of a variance-covariance matrix is
computed using cases that have data needed for estimating that element. This is only
valid if the data are missing completely at random (MCAR).

• "fiml": Full information maximum likelihood (FIML) method, i.e., likelihood is com-
puted case by case using all available data from that case. FIML method is only applicable
for following estimators: "ML", "MLF", and "MLR".

• "two.stage": Two-stage maximum likelihood estimation, i.e., sample statistics is es-
timated using EM algorithm in the first step. Then, these estimated sample statistics
are used as input for a regular analysis. Standard errors and test statistics are adjusted
correctly to reflect the two-step procedure. Two-stage method is only applicable for fol-
lowing estimators: "ML", "MLF", and "MLR".

• "robust.two.stage": Robust two-stage maximum likelihood estimation, i.e., two-stage
maximum likelihood estimation with standard errors and a test statistic that are robust
against non-normality. Robust two-stage method is only applicable for following estima-
tors: "ML", "MLF", and "MLR".

• "doubly.robust": Doubly-robust method only applicable for pairwise maximum likeli-
hood estimation (i.e., estimator = "PML".

Convergence and model idenfitification checks In line with the R package lavaan, this functions
provides several checks for model convergence and model identification:

80 item.cfa

• Degrees of freedom: An error message is printed if the number of degrees of freedom
is negative, i.e., the model is not identified.

• Model convergence: An error message is printed if the optimizer has not converged, i.e.,
results are most likely unreliable.

• Standard errors: An error message is printed if the standard errors could not be com-
puted, i.e., the model might not be identified.

• Variance-covariance matrix of the estimated parameters: A warning message is
printed if the variance-covariance matrix of the estimated parameters is not positive defi-
nite, i.e., the smallest eigenvalue of the matrix is smaller than zero or very close to zero.

• Negative variances of observed variables: A warning message is printed if the es-
timated variances of the observed variables are negative.

• Variance-covariance matrix of observed variables: A warning message is printed
if the estimated variance-covariance matrix of the observed variables is not positive defi-
nite, i.e., the smallest eigenvalue of the matrix is smaller than zero or very close to zero.

• Negative variances of latent variables: A warning message is printed if the esti-
mated variances of the latent variables are negative.

• Variance-covariance matrix of latent variables: A warning message is printed if
the estimated variance-covariance matrix of the latent variables is not positive definite,
i.e., the smallest eigenvalue of the matrix is smaller than zero or very close to zero.

Note that unlike the R package lavaan, the item.cfa function does not provide any results
when the degrees of freedom is negative, the model has not converged, or standard errors
could not be computed.

Model Fit The item.cfa function provides the chi-square test, incremental fit indices (i.e., CFI
and TLI), and absolute fit indices (i.e., RMSEA, and SRMR) to evaluate overall model fit.
However, different versions of the CFI, TLI, and RMSEA are provided depending on the
estimator. Unlike the R package lavaan, the different versions are labeled with Standard, Ad
hoc, and Robust in the output:

• "Standard": CFI, TLI, and RMSEA without any non-normality corrections. These fit
measures based on the normal theory maximum likelihood test statistic are sensitive to
deviations from multivariate normality of endogenous variables. Simulation studies by
Brosseau-Liard et al. (2012), and Brosseau-Liard and Savalei (2014) showed that the
uncorrected fit indices are affected by non-normality, especially at small and medium
sample sizes (e.g., n < 500).

• "Ad hoc": Population-corrected robust CFI, TLI, and RMSEA with ad hoc non-normality
corrections that simply replace the maximum likelihood test statistic with a robust test
statistic (e.g., mean-adjusted chi-square). These fit indices change the population value
being estimated depending on the degree of non-normality present in the data. Brosseau-
Liard et al. (2012) demonstrated that the ad hoc corrected RMSEA increasingly accepts
poorly fitting models as non-normality in the data increases, while the effect of the ad hoc
correction on the CFI and TLI is less predictable with non-normality making fit appear
worse, better, or nearly unchanged (Brosseau-Liard & Savalei, 2014).

• "Robust": Sample-corrected robust CFI, TLI, and RMSEA with non-normality correc-
tions based on formula provided by Li and Bentler (2006) and Brosseau-Liard and Savalei
(2014). These fit indices do not change the population value being estimated and can be
interpreted the same way as the uncorrected fit indices when the data would have been
normal.

item.cfa 81

In conclusion, the use of sample-corrected fit indices (Robust) instead of population-corrected
fit indices (Ad hoc) is recommended. Note that when sample size is very small (e.g., n < 200),
non-normality correction does not appear to adjust fit indices sufficiently to counteract the
effect of non-normality (Brosseau-Liard & Savalei, 2014).

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis (type), matrix or data frame specified in x (x), specification of function
arguments (args), specified model (model), fitted lavaan object (mod.fit), results of the conver-
gence and model identification check (check), and a list with results (result).

Note

The function uses the functions cfa, lavInspect, lavTech, modindices, parameterEstimates,
and standardizedsolution provided in the R package lavaan by Yves Rosseel (2012).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Brosseau-Liard, P. E., Savalei, V., & Li. L. (2012). An investigation of the sample performance
of two nonnormality corrections for RMSEA, Multivariate Behavioral Research, 47, 904-930.
https://doi.org/10.1080/00273171.2014.933697

Brosseau-Liard, P. E., & Savalei, V. (2014) Adjusting incremental fit indices for nonnormality.
Multivariate Behavioral Research, 49, 460-470. https://doi.org/10.1080/00273171.2014.933697

Li, L., & Bentler, P. M. (2006). Robust statistical tests for evaluating the hypothesis of close fit of
misspecified mean and covariance structural models. UCLA Statistics Preprint #506. University of
California.

Rosseel, Y. (2012). lavaan: An R Package for Structural Equation Modeling. Journal of Statistical
Software, 48, 1-36. https://doi.org/10.18637/jss.v048.i02

See Also

item.alpha, item.omega, item.scores

Examples

Not run:

Load data set "HolzingerSwineford1939" in the lavaan package
data("HolzingerSwineford1939", package = "lavaan")

#---------------------------
Measurement model with one factor

Specification using the argument 'x'
item.cfa(HolzingerSwineford1939[, c("x1", "x2", "x3")])

82 item.cfa

Alternative specification using the argument 'model'
item.cfa(HolzingerSwineford1939, model = c("x1", "x2", "x3"))

Alternative specification using the argument 'model'
item.cfa(HolzingerSwineford1939, model = list(visual = c("x1", "x2", "x3")))

#---------------------------
Measurement model with three factors

Specification using the argument 'model'
item.cfa(HolzingerSwineford1939,

model = list(visual = c("x1", "x2", "x3"),
textual = c("x4", "x5", "x6"),
speed = c("x7", "x8", "x9")))

#---------------------------
Residual covariances

One residual covariance
item.cfa(HolzingerSwineford1939,

model = list(visual = c("x1", "x2", "x3"),
textual = c("x4", "x5", "x6"),
speed = c("x7", "x8", "x9")),

rescov = c("x1", "x2"))

Two residual covariances
item.cfa(HolzingerSwineford1939,

model = list(visual = c("x1", "x2", "x3"),
textual = c("x4", "x5", "x6"),
speed = c("x7", "x8", "x9")),

rescov = list(c("x1", "x2"), c("x4", "x5")))

#---------------------------
Second-order factor model based on three first-order factors

item.cfa(HolzingerSwineford1939,
model = list(visual = c("x1", "x2", "x3"),

textual = c("x4", "x5", "x6"),
speed = c("x7", "x8", "x9")),

hierarch = TRUE)

#---------------------------
Measurement model with ordered-categorical indicators

item.cfa(round(HolzingerSwineford1939[, c("x4", "x5", "x6")]), ordered = TRUE)

#---------------------------
Cluster-robust standard errors

Load data set "Demo.twolevel" in the lavaan package
data("Demo.twolevel", package = "lavaan")

item.omega 83

Specification using a variable in 'x'
item.cfa(Demo.twolevel[, c("y4", "y5", "y6", "cluster")], cluster = "cluster")

Specification of the cluster variable in 'cluster'
item.cfa(Demo.twolevel[, c("y4", "y5", "y6")], cluster = Demo.twolevel$cluster)

Specification using a variable in 'x'
item.cfa(Demo.twolevel, model = c("y4", "y5", "y6"), cluster = "cluster")

Specification of the cluster variable in 'cluster'
item.cfa(Demo.twolevel, model = c("y4", "y5", "y6"), cluster = Demo.twolevel$cluster)

#---------------------------
Print argument

Request all results
item.cfa(HolzingerSwineford1939[, c("x1", "x2", "x3")], print = "all")

Request modification indices with value equal or higher than 5
item.cfa(HolzingerSwineford1939[, c("x1", "x2", "x3", "x4")],

print = "modind", min.value = 5)

#---------------------------
lavaan summary of the estimated model

mod <- item.cfa(HolzingerSwineford1939[, c("x1", "x2", "x3")], output = FALSE)

lavaan::summary(mod$mod.fit, standardized = TRUE, fit.measures = TRUE)

#---------------------------
Write Results into a Excel file

result <- item.cfa(HolzingerSwineford1939[, c("x1", "x2", "x3")], output = FALSE)

write.result(result, "CFA.xlsx")

End(Not run)

item.omega Coefficient Omega, Hierarchical Omega, and Categorical Omega

Description

This function computes point estimate and confidence interval for the coefficient omega (McDonald,
1978), hierarchical omega (Kelley & Pornprasertmanit, 2016), and categorical omega (Green &
Yang, 2009) along with standardized factor loadings and omega if item deleted.

Usage

item.omega(x, resid.cov = NULL, type = c("omega", "hierarch", "categ"),

84 item.omega

exclude = NULL, std = FALSE, na.omit = FALSE,
print = c("all", "omega", "item"), digits = 2, conf.level = 0.95,
as.na = NULL, check = TRUE, output = TRUE)

Arguments

x a matrix or data frame. Note that at least three items are needed for computing
omega.

resid.cov a character vector or a list of character vectors for specifying residual covari-
ances when computing coefficient omega, e.g. resid.cov = c("x1", "x2")
for specifying a residual covariance between items x1 and x2 or resid.cov =
list(c("x1", "x2"), c("x3", "x4")) for specifying residual covariances be-
tween items x1 and x2, and items x3 and x4.

type a character string indicating the type of omega to be computed, i.e., omega (de-
fault) for coefficient omega, hierarch for hierarchical omega, and categ for
categorical omega.

exclude a character vector indicating items to be excluded from the analysis.

std logical: if TRUE, the standardized coefficient omega is computed.

na.omit logical: if TRUE, incomplete cases are removed before conducting the analysis
(i.e., listwise deletion); if FALSE, full information maximum likelihood (FIML)
is used for computing coefficient omega or hierarchical omega, while pairwise
deletion is used for computing categorical omega.

print a character vector indicating which results to show, i.e. "all" (default), for all
results "omega" for omega, and "item" for item statistics.

digits an integer value indicating the number of decimal places to be used for display-
ing omega and standardized factor loadings.

conf.level a numeric value between 0 and 1 indicating the confidence level of the interval.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

check logical: if TRUE, argument specification is checked.

output logical: if TRUE, output is shown.

Details

Omega is computed by estimating a confirmatory factor analysis model using the cfa() function
in the lavaan package by Yves Rosseel (2019). Maximum likelihood ("ML") estimator is used
for computing coefficient omega and hierarchical omega, while diagonally weighted least squares
estimator ("DWLS") is used for computing categorical omega.

Approximate confidence intervals are computed using the procedure by Feldt, Woodruff and Salih
(1987). Note that there are at least 10 other procedures for computing the confidence interval (see
Kelley and Pornprasertmanit, 2016), which are implemented in the ci.reliability() function in
the MBESSS package by Ken Kelley (2019).

item.omega 85

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, matrix or data frame specified in x (data), specification of func-
tion arguments (args), fitted lavaan object (mod.fit), and list with results (result).

Note

Computation of the hierarchical and categorical omega is based on the ci.reliability() function
in the MBESS package by Ken Kelley (2019).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Feldt, L. S., Woodruff, D. J., & Salih, F. A. (1987). Statistical inference for coefficient alpha.
Applied Psychological Measurement, 11 93-103.

Green, S. B., & Yang, Y. (2009). Reliability of summed item scores using structural equation model-
ing: An alternative to coefficient alpha. Psychometrika, 74, 155-167. https://doi.org/10.1007/s11336-
008-9099-3

Kelley, K., & Pornprasertmanit, S. (2016). Confidence intervals for population reliability coeffi-
cients: Evaluation of methods, recommendations, and software for composite measures. Psycho-
logical Methods, 21, 69-92. http://dx.doi.org/10.1037/a0040086

Ken Kelley (2019). MBESS: The MBESS R Package. R package version 4.6.0. https://CRAN.R-
project.org/package=MBESS

McDonald, R. P. (1978). Generalizability in factorable domains: Domain validity and generaliz-
ability Educational and Psychological Measurement, 38, 75-79.

See Also

write.result, item.alpha, item.cfa, item.reverse, item.scores

Examples

Not run:
dat <- data.frame(item1 = c(5, 2, 3, 4, 1, 2, 4, 2),

item2 = c(5, 3, 3, 5, 2, 2, 5, 1),
item3 = c(4, 2, 4, 5, 1, 3, 5, 1),
item4 = c(5, 1, 2, 5, 2, 3, 4, 2))

Compute unstandardized coefficient omega and item statistics
item.omega(dat)

Compute unstandardized coefficient omega with a residual covariance
and item statistics
item.omega(dat, resid.cov = c("item1", "item2"))

Compute unstandardized coefficient omega with residual covariances

86 item.reverse

and item statistics
item.omega(dat, resid.cov = list(c("item1", "item2"), c("item3", "item4")))

Compute unstandardized hierarchical omega and item statistics
item.omega(dat, type = "hierarch")

Compute categorical omega and item statistics
item.omega(dat, type = "categ")

Compute standardized coefficient omega and item statistics
item.omega(dat, std = TRUE)

Compute unstandardized coefficient omega
item.omega(dat, print = "omega")

Compute item statistics
item.omega(dat, print = "item")

Compute unstandardized coefficient omega and item statistics while excluding item3
item.omega(dat, exclude = "item3")

Summary of the CFA model used to compute coefficient omega
lavaan::summary(item.omega(dat, output = FALSE)$mod.fit,

fit.measures = TRUE, standardized = TRUE)

Write Results into a Excel file
result <- item.omega(dat, output = FALSE)
write.result(result, "Omega.xlsx")
End(Not run)

item.reverse Reverse Code Scale Item

Description

This function reverse codes an inverted item, i.e., item that is negatively worded.

Usage

item.reverse(x, min = NULL, max = NULL, keep = NULL, as.na = NULL, table = FALSE,
check = TRUE)

Arguments

x a numeric vector.

min an integer indicating the minimum of the item (i.e., lowest possible scale value).

max an integer indicating the maximum of the item (i.e., highest possible scale value).

keep a numeric vector indicating values not to be reverse coded.

item.reverse 87

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

table logical: if TRUE, a cross table item x reverse coded item is printed on the console.

check logical: if TRUE, argument specification is checked.

Details

If arguments min and/or max are not specified, empirical minimum and/or maximum is computed
from the vector. Note, however, that reverse coding might fail if the lowest or highest possible scale
value is not represented in the vector. That is, it is always preferable to specify the arguments min
and max.

Value

Returns a numeric vector with the same length as x containing the reverse coded scale item.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
New York: John Wiley & Sons.

See Also

item.alpha, item.omega, rec, item.scores

Examples

dat <- data.frame(item1 = c(1, 5, 3, 1, 4, 4, 1, 5),
item2 = c(1, 1.3, 1.7, 2, 2.7, 3.3, 4.7, 5),
item3 = c(4, 2, 4, 5, 1, 3, 5, -99))

Reverse code item1
dat$item1r <- item.reverse(dat$item1, min = 1, max = 5)

Reverse code item2
dat$item2r <- item.reverse(dat$item2, min = 1, max = 5)

Reverse code item3 while keeping the value -99
dat$item3r <- item.reverse(dat$item3, min = 1, max = 5, keep = -99)

Reverse code item3 while keeping the value -99 and check recoding
dat$item3r <- item.reverse(dat$item3, min = 1, max = 5, keep = -99, table = TRUE)

88 item.scores

item.scores Compute Scale Scores

Description

This function computes (prorated) scale scores by averaging the (available) items that measure a
single construct by default.

Usage

item.scores(x, fun = c("mean", "sum", "median", "var", "sd", "min", "max"),
prorated = TRUE, p.avail = NULL, n.avail = NULL, as.na = NULL,
check = TRUE)

Arguments

x a matrix or data frame with numeric vectors.

fun a character string indicating the function used to compute scale scores, default:
"mean".

prorated logical: if TRUE (default), prorated scale scores are computed (see ’Details’); if
FALSE, scale scores of only complete cases are computed.

p.avail a numeric value indicating the minimum proportion of available item responses
needed for computing a prorated scale score for each case, e.g. p.avail = 0.8
indicates that scale scores are only computed for cases with at least 80% of item
responses available. By default prorated scale scores are computed for all cases
with at least one item response. Note that either argument p.avail or n.avail
is used to specify the proration criterion.

n.avail an integer indicating the minimum number of available item responses needed
for computing a prorated scale score for each case, e.g. n.avail = 2 indicates
that scale scores are only computed for cases with item responses on at least 2
items. By default prorated scale scores are computed for all cases with at least
one item response. Note that either argument p.avail or n.avail is used to
specify the proration criterion.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

check logical: if TRUE, argument specification is checked.

Details

Prorated mean scale scores are computed by averaging the available items, e.g., if a participant
answers 4 out of 8 items, the prorated scale score is the average of the 4 responses. Averaging the
available items is equivalent to substituting the mean of a participant’s own observed items for each
of the participant’s missing items, i.e., person mean imputation (Mazza, Enders & Ruehlman, 2015)
or ipsative mean imputation (Schafer & Graham, 2002).

item.scores 89

Proration may be reasonable when (1) a relatively high proportion of the items (e.g., 0.8) and never
fewer than half are used to form the scale score, (2) means of the items comprising a scale are similar
and (3) the item-total correlations are similar (Enders, 2010; Graham, 2009; Graham, 2012). Results
of simulation studies indicate that proration is prone to substantial bias when either the item means
or the inter-item correlation vary (Lee, Bartholow, McCarthy, Pederson & Sher, 2014; Mazza et al.,
2015).

Value

Returns a numeric vector with the same length as nrow(x) containing (prorated) scale scores.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Enders, C. K. (2010). Applied missing data analysis. New York, NY: Guilford Press.

Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual Review of
Psychology, 60, 549-576. https://doi.org/10.1146/annurev.psych.58.110405.085530

Graham, J. W. (2012). Missing data: Analysis and design. New York, NY: Springer

Lee, M. R., Bartholow, B. D., McCarhy, D. M., Pederson, S. L., & Sher, K. J. (2014). Two alter-
native approaches to conventional person-mean imputation scoring of the self-rating of the effects of
alcohol scale (SRE). Psychology of Addictive Behaviors, 29, 231-236. https://doi.org/10.1037/adb0000015

Mazza, G. L., Enders, C. G., & Ruehlman, L. S. (2015). Addressing item-level missing data: A
comparison of proration and full information maximum likelihood estimation. Multivariate Behav-
ioral Research, 50, 504-519. https://doi.org/10.1080/00273171.2015.1068157

Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological
Methods, 7, 147-177. https://doi.org/10.1037/1082-989X.7.2.147

See Also

cluster.scores, item.alpha, item.cfa, item.omega,

Examples

dat <- data.frame(item1 = c(3, 2, 4, 1, 5, 1, 3, NA),
item2 = c(2, 2, NA, 2, 4, 2, NA, 1),
item3 = c(1, 1, 2, 2, 4, 3, NA, NA),
item4 = c(4, 2, 4, 4, NA, 2, NA, NA),
item5 = c(3, NA, NA, 2, 4, 3, NA, 3))

Prorated mean scale scores
item.scores(dat)

Prorated standard deviation scale scores
item.scores(dat, fun = "sd")

Sum scale scores without proration

90 kurtosis

item.scores(dat, fun = "sum", prorated = FALSE)

Prorated mean scale scores,
minimum proportion of available item responses = 0.8
item.scores(dat, p.avail = 0.8)

Prorated mean scale scores,
minimum number of available item responses = 3
item.scores(dat, n.avail = 3)

kurtosis Excess Kurtosis

Description

This function computes the excess kurtosis.

Usage

kurtosis(x, as.na = NULL, check = TRUE)

Arguments

x a numeric vector.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

check logical: if TRUE, argument specification is checked.

Details

The same method for estimating kurtosis is used in SAS and SPSS. Missing values (NA) are stripped
before the computation. Note that at least 4 observations are needed to compute excess kurtosis.

Value

Returns the estimated excess kurtosis of x.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
New York: John Wiley & Sons.

See Also

skewness

multilevel.cor 91

Examples

Set seed of the random number generation
set.seed(123)
Generate random numbers according to N(0, 1)
x <- rnorm(100)

Compute excess kurtosis
kurtosis(x)

multilevel.cor Within-Group and Between-Group Correlation Matrix

Description

This function is a wrapper function for computing the within-group and between-group correlation
matrix by calling the sem function in the R package lavaan and provides standard errors, z test
statistics, and significance values (p-values) for testing the hypothesis H0: ρ = 0 for all pairs of
variables within and between groups.

Usage

multilevel.cor(x, cluster, within = NULL, between = NULL, estimator = c("ML", "MLR"),
missing = c("listwise", "fiml"), sig = FALSE, alpha = 0.05,
print = c("all", "cor", "se", "stat", "p"), split = FALSE,
tri = c("both", "lower", "upper"), tri.lower = TRUE,
p.adj = c("none", "bonferroni", "holm", "hochberg", "hommel",

"BH", "BY", "fdr"), digits = 2, p.digits = 3,
as.na = NULL, check = TRUE, output = TRUE)

Arguments

x a matrix or data frame.

cluster a vector representing the nested grouping structure (i.e., group or cluster vari-
able).

within a character vector representing variables that are measured on the within level
and modeled only on the within level. Variables not mentioned in within or
between are measured on the within level and will be modeled on both the
within and between level.

between a character vector representing variables that are measured on the between level
and modeled only on the between level. Variables not mentioned in within
or between are measured on the within level and will be modeled on both the
within and between level.

estimator a character string indicating the estimator to be used: "ML" (default) for maxi-
mum likelihood with conventional standard errors and "MLR" for maximum like-
lihood with Huber-White robust standard errors. Note that by default, full infor-
mation maximum likelihood (FIML) method is used to deal with missing data

92 multilevel.cor

when using "ML" (missing = "fiml"), whereas incomplete cases are removed
listwise (i.e., missing = "listwise") when using "MLR".

missing a character string indicating how to deal with missing data, i.e., "listwise" for
listwise deletion or "fiml" (default) for full information maximum likelihood
(FIML) method. Note that FIML method is only available when estimator =
"ML". Note that it takes longer to estimate the model when using FIML and
using FIML might cause issues in model convergence, these issues might be
resolved by switching to listwise deletion.

sig logical: if TRUE, statistically significant correlation coefficients are shown in
boldface on the console.

alpha a numeric value between 0 and 1 indicating the significance level at which cor-
relation coefficients are printed boldface when sig = TRUE.

print a character string or character vector indicating which results to show on the
console, i.e. "all" for all results, "cor" for correlation coefficients, "se" for
standard errors, "stat" for z test statistics, and "p" for p-values.

split logical: if TRUE, output table is split in within-group and between-group corre-
lation matrix.

tri a character string indicating which triangular of the matrix to show on the con-
sole when split = TRUE, i.e., both for upper and upper for the upper triangular.

tri.lower logical: if TRUE (default) and split = FALSE (default), within-group correlations
are shown in the lower triangular and between-group correlation are shown in
the upper triangular.

p.adj a character string indicating an adjustment method for multiple testing based on
p.adjust, i.e., none (default), bonferroni, holm, hochberg, hommel, BH, BY,
or fdr.

digits an integer value indicating the number of decimal places to be used for display-
ing correlation coefficients.

p.digits an integer value indicating the number of decimal places to be used for display-
ing p-values.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to x but not to cluster.

check logical: if TRUE, argument specification is checked.

output logical: if TRUE, output is shown on the console.

Details

The specification of the within-group and between-group variables is in line with the syntax in
Mplus. That is, the within argument is used to identify the variables in the matrix or data frame
specified in x that are measured on the individual level and modeled only on the within level. They
are specified to have no variance in the between part of the model. The between argument is used
to identify the variables in the matrix or data frame specified in x that are measured on the cluster
level and modeled only on the between level. Variables not mentioned in the arguments within or
between are measured on the individual level and will be modeled on both the within and between
level.

multilevel.cor 93

The function uses maximum likelihood estimation with conventional standard errors (estimator =
"ML") which are not robust against non-normality and full information maximum likelihood (FIML)
method (missing = "fiml") to deal with missing data by default. FIML method cannot be used
when within-group variables have no variance within some clusters. In this cases, the function
will switch to listwise deletion. Note that the current lavaan version 0.6-11 supports FIML method
only for maximum likelihood estimation with conventional standard errors (estimator = "ML")
in multilevel models. Maximum likelihood estimation with Huber-White robust standard errors
(estimator = "MLR") uses listwise deletion to deal with missing data. When using FIML method
there might be issues in model convergence, which might be resolved by switching to listwise
deletion (missing = "listwise").

The lavaan package uses a quasi-Newton optimization method ("nlminb") by default. If the op-
timizer does not converge, model estimation will switch to the Expectation Maximization (EM)
algorithm.

Statistically significant correlation coefficients can be shown in boldface on the console when speci-
fying sig = TRUE. However, this option is not supported when using R Markdown, i.e., the argument
sig will switch to FALSE.

Adjustment method for multiple testing when specifying the argument p.adj is applied to the
within-group and between-group correlation matrix separately.

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis (type), matrix or data frame specified in x (data), specification of function
arguments (args), fitted lavaan object (mod.fit), and list with results (result).

Note

The function uses the functions sem, lavInspect, lavMatrixRepresentation, lavTech, parameterEstimates,
and standardizedsolution provided in the R package lavaan by Yves Rosseel (2012).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Hox, J., Moerbeek, M., & van de Schoot, R. (2018). Multilevel analysis: Techniques and applica-
tions (3rd. ed.). Routledge.

Snijders, T. A. B., & Bosker, R. J. (2012). Multilevel analysis: An introduction to basic and ad-
vanced multilevel modeling (2nd ed.). Sage Publishers.

See Also

write.result, multilevel.descript, multilevel.icc, cluster.scores

94 multilevel.cor

Examples

Not run:

Load data set "Demo.twolevel" in the lavaan package
data("Demo.twolevel", package = "lavaan")

#---------------------------
All variables modeled on both the within and between level
multilevel.cor(Demo.twolevel[, c("y1", "y2", "y3")],

cluster = Demo.twolevel$cluster)

Highlight statistically significant result at alpha = 0.05
multilevel.cor(Demo.twolevel[, c("y1", "y2", "y3")], sig = TRUE,

cluster = Demo.twolevel$cluster)

Split output table in within-group and between-group correlation matrix.
multilevel.cor(Demo.twolevel[, c("y1", "y2", "y3")],

cluster = Demo.twolevel$cluster, split = TRUE)

Print correlation coefficients, standard errors, z test statistics,
and p-values
multilevel.cor(Demo.twolevel[, c("y1", "y2", "y3")],

cluster = Demo.twolevel$cluster, print = "all")

Print correlation coefficients and p-values
significance values with Bonferroni correction
multilevel.cor(Demo.twolevel[, c("y1", "y2", "y3")],

cluster = Demo.twolevel$cluster, print = c("cor", "p"),
p.adj = "bonferroni")

#---------------------------
Variables "y1", "y2", and "y2" modeled on both the within and between level
Variables "w1" and "w2" modeled on the cluster level
multilevel.cor(Demo.twolevel[, c("y1", "y2", "y3", "w1", "w2")],

cluster = Demo.twolevel$cluster,
between = c("w1", "w2"))

#---------------------------
Variables "y1", "y2", and "y2" modeled only on the within level
Variables "w1" and "w2" modeled on the cluster level
multilevel.cor(Demo.twolevel[, c("y1", "y2", "y3", "w1", "w2")],

cluster = Demo.twolevel$cluster,
within = c("y1", "y2", "y3"), between = c("w1", "w2"))

Summary of the multilevel model used to compute the within-group
and between-group correlation matrix
mod <- multilevel.cor(Demo.twolevel[, c("y1", "y2", "y3")],

cluster = Demo.twolevel$cluster, output = FALSE)
lavaan::summary(mod$mod.fit, standardized = TRUE)

Write Results into a Excel file
result <- multilevel.cor(Demo.twolevel[, c("y1", "y2", "y3")],

multilevel.descript 95

cluster = Demo.twolevel$cluster, output = FALSE)
write.result(result, "Multilevel_Correlation.xlsx")

End(Not run)

multilevel.descript Multilevel Descriptive Statistics

Description

This function computes descriptive statistics for multilevel data, e.g. average cluster size, variance
components, intraclass correlation coefficient, design effect, and effective sample size.

Usage

multilevel.descript(x, cluster, method = c("aov", "lme4", "nlme"), REML = TRUE,
digits = 2, icc.digits = 3, as.na = NULL, check = TRUE,
output = TRUE)

Arguments

x a vector, matrix or data frame.

cluster a vector representing the nested grouping structure (i.e., group or cluster vari-
able).

method a character string indicating the method used to estimate intraclass correlation
coefficients, i.e., "aov" ICC estimated using the aov function, "lme4" (default)
ICC estimated using the lmer function in the lme4 package, "nlme" ICC esti-
mated using the lme function in the nlme package.

REML logical: if TRUE (default), restricted maximum likelihood is used to estimate the
null model when using the lmer() function in the lme4 package or the lme()
function in the nlme package.

digits an integer value indicating the number of decimal places to be used.

icc.digits an integer indicating the number of decimal places to be used for displaying
intraclass correlation coefficients.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to x but not to cluster.

check logical: if TRUE, argument specification is checked.

output logical: if TRUE, output is shown on the console.

Details

Note that this function is restricted to two-level models.

96 multilevel.descript

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, matrix or data frame specified in x (data), specification of func-
tion arguments (args), and list with results (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Hox, J., Moerbeek, M., & van de Schoot, R. (2018). Multilevel analysis: Techniques and applica-
tions (3rd. ed.). Routledge.

Snijders, T. A. B., & Bosker, R. J. (2012). Multilevel analysis: An introduction to basic and ad-
vanced multilevel modeling (2nd ed.). Sage Publishers.

See Also

multilevel.cor, multilevel.icc, multilevel.indirect, multilevel.r2, write.result,

Examples

dat <- data.frame(id = c(1, 2, 3, 4, 5, 6, 7, 8, 9),
cluster = c(1, 1, 1, 1, 2, 2, 3, 3, 3),
x1 = c(2, 3, 2, 2, 1, 2, 3, 4, 2),
x2 = c(3, 2, 2, 1, 2, 1, 3, 2, 5),
x3 = c(2, 1, 2, 2, 3, 3, 5, 2, 4))

Multilevel descriptive statistics for x1
multilevel.descript(dat$x1, cluster = dat$cluster)

Multilevel descriptive statistics for x1, print ICC with 5 digits
multilevel.descript(dat$x1, cluster = dat$cluster, icc.digits = 5)

Multilevel descriptive statistics for x1, convert value 1 to NA
multilevel.descript(dat$x1, cluster = dat$cluster, as.na = 1)

Multilevel descriptive statistics for x1,
use lme() function in the nlme package to estimate ICC
multilevel.descript(dat$x1, cluster = dat$cluster, method = "nlme")

Multilevel descriptive statistics for x1, x2, and x3
multilevel.descript(dat[, c("x1", "x2", "x3")], cluster = dat$cluster)

Not run:
Write Results into a Excel file
result <- multilevel.descript(dat[, c("x1", "x2", "x3")], cluster = dat$cluster,

output = FALSE)
write.result(result, "Multilevel_Descript.xlsx")
End(Not run)

multilevel.icc 97

multilevel.icc Intraclass Correlation Coefficient, ICC(1) and ICC(2)

Description

This function computes the intraclass correlation coefficient ICC(1), i.e., proportion of the total
variance explained by the grouping structure, and ICC(2), i.e., reliability of aggregated variables.

Usage

multilevel.icc(x, cluster, type = 1, method = c("aov", "lme4", "nlme"), REML = TRUE,
as.na = NULL, check = TRUE)

Arguments

x a vector, matrix or data frame.

cluster a vector representing the nested grouping structure (i.e., group or cluster vari-
able).

type numeric value indicating the type of intraclass correlation coefficient, i.e., type
= 1 for ICC(1) and type = 2 for ICC(2).

method a character string indicating the method used to estimate intraclass correlation
coefficients, i.e., method = "aov" ICC estimated using the aov function, method
= "lme4" (default) ICC estimated using the lmer function in the lme4 package,
method = "nlme" ICC estimated using the lme function in the nlme package.
Note that if the lme4 package is not installed, method = "aov" will be used.

REML logical: if TRUE (default), restricted maximum likelihood is used to estimate
the null model when using the lmer function in the lme4 package or the lme
function in the nlme package.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to x but not to cluster.

check logical: if TRUE, argument specification is checked.

Details

Note that this function is restricted to two-level models.

Value

Returns a numeric vector with intraclass correlation coefficient(s).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

98 multilevel.indirect

References

Hox, J., Moerbeek, M., & van de Schoot, R. (2018). Multilevel analysis: Techniques and applica-
tions (3rd. ed.). Routledge.

Snijders, T. A. B., & Bosker, R. J. (2012). Multilevel analysis: An introduction to basic and ad-
vanced multilevel modeling (2nd ed.). Sage Publishers.

See Also

multilevel.cor, multilevel.descript

Examples

dat <- data.frame(id = c(1, 2, 3, 4, 5, 6, 7, 8, 9),
cluster = c(1, 1, 1, 1, 2, 2, 3, 3, 3),
x1 = c(2, 3, 2, 2, 1, 2, 3, 4, 2),
x2 = c(3, 2, 2, 1, 2, 1, 3, 2, 5),
x3 = c(2, 1, 2, 2, 3, 3, 5, 2, 4))

ICC(1) for x1
multilevel.icc(dat$x1, cluster = dat$cluster)

ICC(1) for x1, convert value 1 to NA
multilevel.icc(dat$x1, cluster = dat$cluster, as.na = 1)

ICC(2) for x1
multilevel.icc(dat$x1, cluster = dat$cluster, type = 2)

ICC(1) for x1,
use lmer() function in the lme4 package to estimate ICC
multilevel.icc(dat$x1, cluster = dat$cluster, method = "lme4")

ICC(1) for x1, x2, and x3
multilevel.icc(dat[, c("x1", "x2", "x3")], cluster = dat$cluster)

multilevel.indirect Confidence Interval for the Indirect Effect in a 1-1-1 Multilevel Medi-
ation Model

Description

This function computes the confidence interval for the indirect effect in a 1-1-1 multilevel mediation
model with random slopes based on the Monte Carlo method.

Usage

multilevel.indirect(a, b, se.a, se.b, cov.ab = 0, cov.rand, se.cov.rand,
nrep = 100000, alternative = c("two.sided", "less", "greater"),

seed = NULL, conf.level = 0.95, digits = 3, check = TRUE,
output = TRUE)

multilevel.indirect 99

Arguments

a a numeric value indicating the coefficient a, i.e., average effect of X on M on
the cluster or between-group level.

b a numeric value indicating the coefficient b, i.e., average effect of M on Y ad-
justed for X on the cluster or between-group level.

se.a a positive numeric value indicating the standard error of a.

se.b a positive numeric value indicating the standard error of b.

cov.ab a positive numeric value indicating the covariance between a and b.

cov.rand a positive numeric value indicating the covariance between the random slopes
for a and b.

se.cov.rand a positive numeric value indicating the standard error of the covariance between
the random slopes for a and b.

nrep an integer value indicating the number of Monte Carlo repetitions.

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less".

seed a numeric value specifying the seed of the random number generator when using
the Monte Carlo method.

conf.level a numeric value between 0 and 1 indicating the confidence level of the interval.

digits an integer value indicating the number of decimal places to be used for display-
ing

check logical: if TRUE, argument specification is checked.

output logical: if TRUE, output is shown on the console.

Details

In statistical mediation analysis (MacKinnon & Tofighi, 2013), the indirect effect refers to the effect
of the independent variable X on the outcome variable Y transmitted by the mediator variable M .
The magnitude of the indirect effect ab is quantified by the product of the the coefficient a (i.e.,
effect ofX onM) and the coefficient b (i.e., effect ofM on Y adjusted forX). However, mediation
in the context of a 1-1-1 multilevel model where variables X , M , and Y are measured at level 1,
the coefficients a and b can vary across level-2 units (i.e., random slope). As a result, a and b may
covary so that the estimate of the indirect effect is no longer simply the product of the coefficients
âb̂, but âb̂ + τa,b, where τa,b is the level-2 covariance between the random slopes a and b. The
covariance term needs to be added to âb̂ only when random slopes are estimated for both a and b.
Otherwise, the simple product is sufficient to quantify the indirect effect, and the indirect function
can be used instead.

In practice, researchers are often interested in confidence limit estimation for the indirect effect.
There are several methods for computing a confidence interval for the indirect effect in a single-
level mediation models (see indirect function). The Monte Carlo (MC) method (MacKinnon et
al., 2004) is a promising method in single-level mediation model which was also adapted to the
multilevel mediation model (Bauer, Preacher & Gil, 2006). This method requires seven pieces of
information available from the results of a multilevel mediation model:

a Coefficient a, i.e., average effect of X on M on the cluster or between-group level. In Mplus,
Estimate of the random slope a under Means at the Between Level.

100 multilevel.indirect

b Coefficient a, i.e., average effect of M on Y on the cluster or between-group level. In Mplus,
Estimate of the random slope b under Means at the Between Level.

se.a Standard error of a. In Mplus, S.E. of the random slope a under Means at the Between Level.
se.a Standard error of a. In Mplus, S.E. of the random slope a under Means at the Between Level.
cov.ab Covariance between a and b. In Mplus, the estimated covariance matrix for the parameter

estimates (i.e., asymptotic covariance matrix) need to be requested by specifying TECH3 along
with TECH1 in the OUTPUT section. In the TECHNICAL 1 OUTPUT under PARAMETER SPECIFICATION
FOR BETWEEN, the numbers of the parameter for the coefficients a and b need to be identified
under ALPHA to look up cov.av in the corresponding row and column in the TECHNICAL 3
OUTPUT under ESTIMATED COVARIANCE MATRIX FOR PARAMETER ESTIMATES.

cov.rand Covariance between the random slopes for a and b. In Mplus, Estimate of the covariance
a WITH b at the Between Level.

se.cov.rand Standard error of the covariance between the random slopes for a and b. In Mplus,
S.E. of the covariance a WITH b at the Between Level.

Note that all pieces of information except cov.ab can be looked up in the standard result output of
the multilevel mediation model. In order to specify cov.ab, the covariance matrix for the parameter
estimates (i.e., asymptotic covariance matrix) is required. In practice, cov.ab will oftentimes be
very small so that cov.ab may be set to 0 (i.e., default value) with negligible impact on the results.

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis (type), list with the input specified in a, b, se.a, se.b, cov.ab, cov.rand,
and se.cov.rand (data), specification of function arguments (args), and a list with the result of
the Monte Carlo method and the result table (result).

Note

The function was adapted from the interactive web tool by Preacher and Selig (2010).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Bauer, D. J., Preacher, K. J., & Gil, K. M. (2006). Conceptualizing and testing random indirect
effects and moderated Mediation in multilevel models: New procedures and recommendations.
Psychological Methods, 11, 142-163. https://doi.org/10.1037/1082-989X.11.2.142

Kenny, D. A., Korchmaros, J. D., & Bolger, N. (2003). Lower level Mediation in multilevel models.
Psychological Methods, 8, 115-128. https://doi.org/10.1037/1082-989x.8.2.115

MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence limits for the indirect
effect: Distribution of the product and resampling methods. Multivariate Behavioral Research, 39,
99-128. https://doi.org/10.1207/s15327906mbr3901_4

MacKinnon, D. P., & Tofighi, D. (2013). Statistical mediation analysis. In J. A. Schinka, W. F.
Velicer, & I. B. Weiner (Eds.), Handbook of psychology: Research methods in psychology (pp.
717-735). John Wiley & Sons, Inc..

multilevel.r2 101

Preacher, K. J., & Selig, J. P. (2010). Monte Carlo method for assessing multilevel Mediation:
An interactive tool for creating confidence intervals for indirect effects in 1-1-1 multilevel models
[Computer software]. Available from http://quantpsy.org/.

See Also

indirect

Examples

Confidence Interval for the Indirect Effect
multilevel.indirect(a = 0.25, b = 0.20, se.a = 0.11, se.b = 0.13,

cov.ab = 0.01, cov.rand = 0.40, se.cov.rand = 0.02)

Save results of the Monte Carlo method
ab <- multilevel.indirect(a = 0.25, b = 0.20, se.a = 0.11, se.b = 0.13,

cov.ab = 0.01, cov.rand = 0.40, se.cov.rand = 0.02,
output = FALSE)$result$ab

Histogram of the distribution of the indirect effect
hist(ab)

multilevel.r2 R-Squared Measures for Multilevel and Linear Mixed Effects Models

Description

This function computes R-squared measures by Raudenbush and Bryk (2002), Snijders and Bosker
(1994), Nakagawa and Schielzeth (2013) as extended by Johnson (2014), and Rights and Sterba
(2019) for multilevel and linear mixed effects models estimated by using the lmer() function in the
package lme4 or lme() function in the package nlme.

Usage

multilevel.r2(model, print = c("all", "RB", "SB", "NS", "RS"), digits = 3,
plot = FALSE, gray = FALSE, start = 0.15, end = 0.85,
color = c("#D55E00", "#0072B2", "#CC79A7", "#009E73", "#E69F00"),
check = TRUE, output = TRUE)

Arguments

model a fitted model of class "lmerMod" from the lme4 package or "lme" from the
nlme package.

print a character vector indicating which R-squared measures to be printed on the
console, i.e., RB for measures from Raudenbush and Bryk (2002), SB for mea-
sures from Snijders and Bosker (1994), NS for measures from Nakagawa and
Schielzeth (2013) as extended by Johnson (2014), and RS for measures from
Rights and Sterba (2019). The default setting is print = "RS".

102 multilevel.r2

digits an integer value indicating the number of decimal places to be used.

plot logical: if TRUE, bar chart showing the decomposition of scaled total, within-
cluster, and between-cluster outcome variance into five (total), three (within-
cluster), and two (between-cluster) proportions is drawn. Note that the ggplot2
package is required to draw the bar chart.

gray logical: if TRUE, graphical parameter to draw the bar chart in gray scale.

start a numeric value between 0 and 1, graphical parameter to specify the gray value
at the low end of the palette.

end a numeric value between 0 and 1, graphical parameter to specify the gray value
at the high end of the palette.

color a character vector, graphical parameter indicating the color of bars in the bar
chart in the following order: Fixed slopes (Within), Fixed slopes (Between),
Slope variation (Within), Intercept variation (Between), and Residual (Within).
By default, colors from the colorblind-friendly palettes are used

check logical: if TRUE, argument specification is checked.

output logical: if TRUE, output is shown on the console.

Details

A number of R-squared measures for multilevel and linear mixed effects models have been de-
veloped in the methodological literature (see Rights & Sterba, 2018). Based on these measures,
following measures were implemented in the current function:

Raudenbush and Bryk (2002) R-squared measures by Raudenbush and Bryk (2002) are based on
the proportional reduction of unexplained variance when predictors are added. More specif-
ically, variance estimates from the baseline/null model (i.e., σ2

e|b and σ2
u0|b) and variance es-

timates from the model including predictors (i.e., σ2
e|m and σ2

u0|m) are used to compute the
proportional reduction in variance between baseline/null model and the complete model by:

R2
1(RB) =

σ2
e|b − σ

2
e|m

σ2
e|b

for the proportional reduction at level-1 (within-cluster) and by:

R2
2(RB) =

σ2
u0|b − σ

2
u0|m

σ2
u0|b

for the proportional reduction at level-2 (between-cluster), where |b and |m represent the base-
line and full models, respectively (Hox et al., 2018; Roberts et al., 2010).
A major disadvantage of these measures is that adding predictors can increases rather than
decreases some of the variance components and it is even possible to obtain negative values
for R2 with these formulas (Snijders & Bosker, 2012). According to Snijders and Bosker
(1994) this can occur because the between-group variance is a function of both level-1 and
level-2 variance:

var(Ȳj) = σ2
u0 +

σ2
e

nj

multilevel.r2 103

Hence, adding a predictor (e.g., cluster-mean centered predictor) that explains proportion of
the within-group variance will decrease the estimate of σ2

e and increase the estimate σ2
u0 if

this predictor does not explain a proportion of the between-group variance to balance out the
decrease in σ2

e (LaHuis et al., 2014). Negative estimates for R2 can also simply occur due to
chance fluctuation in sample estimates from the two models.
Another disadvantage of these measures is that R2

2(RB) for the explained variance at level-2
has been shown to perform poorly in simulation studies even with j = 200 clusters with group
cluster size of nj = 50 (LaHuis et al., 2014; Rights & Sterba, 2019).
Moreover, when there is missing data in the level-1 predictors, it is possible that sample sizes
for the baseline and complete models differ.
Finally, it should be noted that R-squared measures by Raudenbush and Bryk (2002) are ap-
propriate for random intercept models, but not for random intercept and slope models. For
random slope models, Snijders and Bosker (2012) suggested to re-estimate the model as ran-
dom intercept models with the same predictors while omitting the random slopes to compute
the R-squared measures. However, the simulation study by LaHuis (2014) suggested that the
R-squared measures showed an acceptable performance when there was little slope variance,
but did not perform well in the presence of higher levels of slope variance.

Snijders and Bosker (1994) R-squared measures by Snijders and Bosker (1994) are based on the
proportional reduction of mean squared prediction error and is computed using the formula:

R2
1(SB) =

σ̂2
e|m + σ̂2

u0|m

σ̂2
e|b + σ̂2

u0|b

for computing the proportional reduction of error at level-1 representing the total amount of
explained variance and using the formula:

R2
2(SB) =

σ̂2
e|m/nj + σ̂2

u0|m

σ̂2
e|b/nj + σ̂2

u0|b

for computing the proportional reduction of error at level-2 by dividing the σ̂2
e by the group

cluster size nj or by the average cluster size for unbalanced data (Roberts et al., 2010). Note
that the function uses the harmonic mean of the group sizes as recommended by Snijders and
Bosker (1994). The population values of R2 based on these measures cannot be negative
because the interplay of level-1 and level-2 variance components is considered. However,
sample estimates ofR2 can be negative either due to chance fluctuation when sample sizes are
small or due to model misspecification (Snijders and Bosker, 2012).
When there is missing data in the level-1 predictors, it is possible that sample sizes for the
baseline and complete models differ.
Similar to the R-squared measures by Raudenbush and Bryk (2002), the measures by Snijders
and Bosker (1994) are appropriate for random intercept models, but not for random intercept
and slope models. Accordingly, for random slope models, Snijders and Bosker (2012) sug-
gested to re-estimate the model as random intercept models with the same predictors while
omitting the random slopes to compute the R-squared measures. The simulation study by
LaHuis et al. (2014) revealed that the R-squared measures showed an acceptable performance,
but it should be noted that R2

2(SB) the explained variance at level-2 was not investigated in
their study.

104 multilevel.r2

Nakagawa and Schielzeth (2013) R-squared measures by Nakagawa and Schielzeth (2013) are
based on partitioning model-implied variance from a single fitted model and uses the variance
of predicted values of var(Ŷij) to form both the outcome variance in the denominator and the
explained variance in the numerator of the formulas:

R2
m(NS) =

var(Ŷij)

var(Ŷij) + σ2
u0 + σ2

e

for marginal total R2
m(NS) and:

R2
c(NS) =

var(Ŷij) + σ2
u0

var(Ŷij) + σ2
u0 + σ2

e

for conditional total R2
c(NS). In the former formula R2 predicted scores are marginalized

across random effects to indicate the variance explained by fixed effects and in the latter for-
mulaR2 predicted scores are conditioned on random effects to indicate the variance explained
by fixed and random effects (Rights and Sterba, 2019).
The advantage of these measures is that they can never become negative and that they can
also be extended to generalized linear mixed effects models (GLMM) when outcome vari-
ables are not continuous (e.g., binary outcome variables). Note that currently the function
does not provide R2 measures for GLMMs, but these measures can be obtained using the
r.squaredGLMM() function in the MuMIn package.
A disadvantage is that these measures do not allow random slopes and are restricted to the
simplest random effect structure (i.e., random intercept model). In other words, these mea-
sures do not fully reflect the structure of the fitted model when using random intercept and
slope models. However, Johnson (2014) extended these measures to allow random slope by
taking into account the contribution of random slopes, intercept-slope covariances, and the
covariance matrix of random slope to the variance in Yij . As a result, R-squared measures by
Nakagawa and Schielzeth (2013) as extended by Johnson (2014) can be used for both random
intercept, and random intercept and slope models.
The major criticism of the R-squared measures by Nakagawa and Schielzeth (2013) as ex-
tended by Johnson (2014) is that these measures do not decompose outcome variance into each
of total, within-cluster, and between-cluster variance which precludes from computing level-
specific R2 measures. In addition, these measures do not distinguish variance attributable to
level-1 versus level-2 predictors via fixed effects, and they also do not distinguish between
random intercept and random slope variation (Rights and Sterba, 2019).

Rights and Sterba (2019) R-squared measures by Rights and Sterba (2019) provide an integrative
framework of R-squared measures for multilevel and linear mixed effects models with random
intercepts and/or slopes. Their measures are also based on partitioning model implied variance
from a single fitted model, but they provide a full partitioning of the total outcome variance to
one of five specific sources:

• variance attributable to level-1 predictors via fixed slopes (shorthand: variance attributable
to f1)

• variance attributable to level-2 predictors via fixed slopes (shorthand: variance attributable
to f2)

• variance attributable to level-1 predictors via random slope variation/ covariation (short-
hand: variance attributable to v)

multilevel.r2 105

• variance attributable to cluster-specific outcome means via random intercept variation
(shorthand: variance attributable to m)

• variance attributable to level-1 residuals

R2 measures are based on the outcome variance of interest (total, within-cluster, or between-
cluster) in the denominator, and the source contributing to explained variance in the numerator:

Total R2 measures incorporate both within-cluster and between cluster variance in the de-
nominator and quantify variance explained in an omnibus sense:

• R2(f1)
t : Proportion of total outcome variance explained by level-1 predictors via fixed

slopes.

• R2(f2)
t : Proportion of total outcome variance explained by level-2 predictors via fixed

slopes.

• R2(f)
t : Proportion of total outcome variance explained by all predictors via fixed

slopes.

• R2(v)
t : Proportion of total outcome variance explained by level-1 predictors via ran-

dom slope variation/covariation.

• R2(m)
t : Proportion of total outcome variance explained by cluster-specific outcome

means via random intercept variation.

• R2(fv)
t : Proportion of total outcome variance explained by predictors via fixed slopes

and random slope variation/covariation.

• R2(fvm)
t : Proportion of total outcome variance explained by predictors via fixed

slopes and random slope variation/covariation and by cluster-specific outcome means
via random intercept variation.

Within-Cluster R2 measures incorporate only within-cluster variance in the denominator
and indicate the degree to which within-cluster variance can be explained by a given
model:

• R2(f1)
w : Proportion of within-cluster outcome variance explained by level-1 predic-

tors via fixed slopes.

• R2(v)
w : Proportion of within-cluster outcome variance explained by level-1 predictors

via random slope variation/covariation.

• R2(f1v)
w : Proportion of within-cluster outcome variance explained by level-1 predic-

tors via fixed slopes and random slope variation/covariation.
Between-Cluster R2 measures incorporate only between-cluster variance in the denomina-

tor and indicate the degree to which between-cluster variance can be explained by a given
model:

• R2(f2)
b : Proportion of between-cluster outcome variance explained by level-2 predic-

tors via fixed slopes.

• R2(m)
b : Proportion of between-cluster outcome variance explained by cluster-specific

outcome means via random intercept variation.

The decomposition of the total outcome variance can be visualized in a bar chart by specifying
plot = TRUE. The first column of the bar chart decomposes scaled total variance into five
distinct proportions (i.e., R2(f1)

t , R2(f2)
t , R2(f)

t , R2(v)
t , R2(m)

t , R2(fv)
t , and R

2(fvm)
t), the

second column decomposes scaled within-cluster variance into three distinct proportions (i.e.,
R

2(f1)
w ,R2(v)

w , andR2(f1v)
w), and the third column decomposes scaled between-cluster variance

into two distinct proportions (i.e., R2(f2)
b , R2(m)

b).

106 multilevel.r2

Note that the function assumes that all level-1 predictors are centered within cluster (i.e.,
group-mean or cluster-mean centering) as has been widely recommended (e.g., Enders &
Tofighi, D., 2007; Rights et al., 2019). In fact, it does not matter whether a lower-level pre-
dictor is merely a control variable, or is quantitative or categorical (Yaremych et al., 2021),
cluster-mean centering should always be used for lower-level predictors to obtain an orthog-
onal between-within partitioning of a lower-level predictor’s variance that directly parallels
what happens to a level-1 outcome (Hoffman & Walters, 2022). In the absence of cluster-
mean-centering, however, the function provides total R2 measures, but does not provide any
within-cluster or between-cluster R2 measures.

By default, the function only computes R-squared measures by Rights and Sterba (2019) because
the other R-squared measures reflect the same population quantity provided by Rights and Sterba
(2019). That is, R-squared measures R2

1(RB) and R2
2(RB) by Raudenbush and Bryk (2002) are

equivalent toR2(f1v)
w andR2(f2)

b , R-squared measuresR2
1(SB) andR2

2(SB) are equivalent toR2(f)
t

and R2(f2)
b , and R-squared measures R2

m(NS) and R2
c(NS) by Nakagawa and Schielzeth (2013)

as extended by Johnson (2014) are equivalent to R2(f)
t and R2(fvm)

t (see Rights and Sterba, Table
3).

Note that none of these measures provide an R2 for the random slope variance explained by cross-
level interactions, a quantity that is frequently of interest (Hoffman & Walters, 2022).

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, model specified in model (model), specification of function argu-
ments (args), and list with results (result).

Note

This function is based on the multilevelR2() function from the mitml package by Simon Grund,
Alexander Robitzsch and Oliver Luedtke (2021) and calls the r2mlm() function in the r2mlm pack-
age by Mairead Shaw, Jason Rights, Sonya Sterba, and Jessica Flake.

Author(s)

Simon Grund, Alexander Robitzsch, Oliver Luedtk, Mairead Shaw, Jason D. Rights, Sonya K.
Sterba, Jessica K. Flake, and Takuya Yanagida

References

Enders, C. K., & Tofighi, D. (2008) Centering predictor variables in cross-sectional multilevel mod-
els: A new look at on old issue. Psychological Methods, 12, 121-138. https://doi.org/10.1037/1082-
989X.12.2.121

Hoffmann, L., & Walter, W. R. (2022). Catching up on multilevel modeling. Annual Review of
Psychology, 73, 629-658. https://doi.org/10.1146/annurev-psych-020821-103525

Hox, J., Moerbeek, M., & van de Schoot, R. (2018). Multilevel Analysis: Techniques and Applica-
tions (3rd ed.). Routledge.

Johnson, P. C. D. (2014). Extension of Nakagawa & Schielzeth’s R2 GLMM to random slopes mod-
els. Methods in Ecology and Evolution, 5(9), 944-946. https://doi.org/10.1111/2041-210X.12225

multilevel.r2 107

LaHuis, D. M., Hartman, M. J., Hakoyama, S., & Clark, P. C. (2014). Explained variance measures
for multilevel models. Organizational Research Methods, 17, 433-451. https://doi.org/10.1177/1094428114541701

Nakagawa, D., & Schielzeth, H. (2013). A general and simple method for obtaining R2 from gener-
alized linear mixed-effects models. Methods in Ecology and Evolution, 4(2), 133-142. https://doi.org/10.1111/j.2041-
210x.2012.00261.x

Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Application and data
analysis methods. Sage.

Rights, J. D., Preacher, K. J., & Cole, D. A. (2020). The danger of conflating level-specific effects
of control variables when primary interest lies in level-2 effects. British Journal of Mathematical
and Statistical Psychology, 73(Suppl 1), 194-211. https://doi.org/10.1111/bmsp.12194

Rights, J. D., & Sterba, S. K. (2019). Quantifying explained variance in multilevel models: An
integrative framework for defining R-squared measures. Psychological Methods, 24, 309-338.
https://doi.org/10.1037/met0000184

Roberts, K. J., Monaco, J. P., Stovall, H., & Foster, V. (2011). Explained variance in multilevel
models (pp. 219-230). In J. J. Hox & J. K. Roberts (Eds.), Handbook of advanced multilevel
analysis. Routledge.

Snijders, T. A. B., & Bosker, R. (1994). Modeled variance in two-level models. Sociological
methods and research, 22, 342-363. https://doi.org/10.1177/0049124194022003004

Snijders, T. A. B., & Boser, R. (2012). Multilevel analysis: An introduction to basic and advanced
multilevel modeling (2nd ed.). Sage.

Yaremych, H. E., Preacher, K. J., & Hedeker, D. (2021). Centering categorical predictors in multi-
level models: Best practices and interpretation. Psychological Methods. Advanced online publica-
tion. https://doi.org/10.1037/met0000434

See Also

multilevel.cor, multilevel.descript, multilevel.icc, multilevel.indirect

Examples

Not run:
Load misty, lme4, nlme, and ggplot2 package
library(misty)
library(lme4)
library(nlme)
library(ggplot2)

Load data set "Demo.twolevel" in the lavaan package
data("Demo.twolevel", package = "lavaan")

#---------------------------

Cluster mean centering, center() from the misty package
Demo.twolevel$x2.c <- center(Demo.twolevel$x2, type = "CWC",

cluster = Demo.twolevel$cluster)

Compute group means, cluster.scores() from the misty package
Demo.twolevel$x2.b <- cluster.scores(Demo.twolevel$x2,

108 multilevel.r2

cluster = Demo.twolevel$cluster)

Estimate multilevel model using the lme4 package
mod1a <- lmer(y1 ~ x2.c + x2.b + w1 + (1 + x2.c | cluster), data = Demo.twolevel,

REML = FALSE, control = lmerControl(optimizer = "bobyqa"))

#---------------------------

R-squared measures according to Rights and Sterba (2019)
multilevel.r2(mod1a)

Estimate multilevel model using the nlme package
mod1b <- lme(y1 ~ x2.c + x2.b + w1, random = ~ 1 + x2.c | cluster, data = Demo.twolevel,

method = "ML")

R-squared measures according to Rights and Sterba (2019)
multilevel.r2(mod1b)

#---

Bar chart showing the decomposition of scaled total, within-cluster,
and between-cluster outcome variance
multilevel.r2(mod1a, plot = TRUE)

Bar chart in gray scale
multilevel.r2(mod1a, plot = TRUE, gray = TRUE)

Save bar chart, ggsave() from the ggplot2 package
ggsave("Proportion_of_Variance.png", dpi = 600, width = 5.5, height = 5.5)

#---

Estimate multilevel model without random slopes
Note. R-squared measures by Raudenbush and Bryk (2002), and Snijders and
Bosker (2012) should be computed based on the random intercept model
mod2 <- lmer(y1 ~ x2.c + x2.b + w1 + (1 | cluster), data = Demo.twolevel,

REML = FALSE, control = lmerControl(optimizer = "bobyqa"))

Print all available R-squared measures
multilevel.r2(mod2, print = "all")

#---

Draw bar chart manually
mod1a.r2 <- multilevel.r2(mod1a, output = FALSE)

Prepare data frame for ggplot()
df <- data.frame(var = factor(rep(c("Total", "Within", "Between"), each = 5),

level = c("Total", "Within", "Between")),
part = factor(c("Fixed Slopes (Within)", "Fixed Slopes (Between)",

"Slope Variation (Within)", "Intercept Variation (Between)",
"Residual (Within)"),

level = c("Residual (Within)", "Intercept Variation (Between)",

na.as 109

"Slope Variation (Within)", "Fixed Slopes (Between)",
"Fixed Slopes (Within)")),

y = as.vector(mod1a.r2$result$rs$decomp))

Draw bar chart in line with the default setting of multilevel.r2()
ggplot(df, aes(x = var, y = y, fill = part)) +

theme_bw() +
geom_bar(stat = "identity") +
scale_fill_manual(values = c("#E69F00", "#009E73", "#CC79A7", "#0072B2", "#D55E00")) +
scale_y_continuous(name = "Proportion of Variance", breaks = seq(0, 1, by = 0.1)) +
theme(axis.title.x = element_blank(),

axis.ticks.x = element_blank(),
legend.title = element_blank(),
legend.position = "bottom",
legend.box.margin = margin(-10, 6, 6, 6)) +

guides(fill = guide_legend(nrow = 2, reverse = TRUE))

End(Not run)

na.as Replace Missing Values With User-Specified Values

Description

This function replaces NA in a vector, factor, matrix or data frame with user-specified values in the
argument value.

Usage

na.as(x, value, as.na = NULL, check = TRUE)

Arguments

x a vector, factor, matrix or data frame.

value a numeric value or character string with which NA is replaced.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

check logical: if TRUE, argument specification is checked.

Value

Returns x with NA replaced with the numeric value or character string specified in value.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

as.na, na.auxiliary, na.coverage, na.descript, na.indicator, na.pattern, na.prop, na.test

110 na.as

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples

#--------------------------------------
Numeric vector
x.num <- c(1, 3, NA, 4, 5)

Replace NA with 2
na.as(x.num, value = 2)

#--------------------------------------
Character vector
x.chr <- c("a", NA, "c", "d", "e")

Replace NA with "b"
na.as(x.chr, value = "b")

#--------------------------------------
Factor
x.factor <- factor(c("a", "a", NA, NA, "c", "c"))

Replace NA with "b"
na.as(x.factor, value = "b")

#--------------------------------------
Matrix
x.mat <- matrix(c(1, NA, 3, 4, 5, 6), ncol = 2)

Replace NA with 2
na.as(x.mat, value = 2)

#--------------------------------------
Data frame
x.df1 <- data.frame(x1 = c(NA, 2, 3),

x2 = c(2, NA, 3),
x3 = c(3, NA, 2), stringsAsFactors = FALSE)

Replace NA with -99
na.as(x.df1, value = -99)

#--------------------------------------
Recode value in data frame
x.df2 <- data.frame(x1 = c(1, 2, 30),

x2 = c(2, 1, 30),
x3 = c(30, 1, 2))

Replace 30 with NA and then replace NA with 3
na.as(x.df2, value = 3, as.na = 30)

na.auxiliary 111

na.auxiliary Auxiliary variables analysis

Description

This function computes (1) Pearson product-moment correlation matrix to identify variables related
to the incomplete variable and (2) Cohen’s d comparing cases with and without missing values to
identify variables related to the probability of missingness.

Usage

na.auxiliary(x, tri = c("both", "lower", "upper"), weighted = TRUE,
correct = FALSE, digits = 2, as.na = NULL, check = TRUE,
output = TRUE)

Arguments

x a matrix or data frame with numeric vectors.

tri a character string indicating which triangular of the correlation matrix to show
on the console, i.e., both for upper and lower triangular, lower (default) for the
lower triangular, and upper for the upper triangular.

weighted logical: if TRUE (default), the weighted pooled standard deviation is used.

correct logical: if TRUE, correction factor for Cohen’s d to remove positive bias in small
samples is used.

digits integer value indicating the number of decimal places digits to be used for dis-
playing correlation coefficients and Cohen’s d estimates.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

check logical: if TRUE, argument specification is checked.

output logical: if TRUE, output is shown on the console.

Details

Note that non-numeric variables (i.e., factors, character vectors, and logical vectors) are excluded
from to the analysis.

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, matrix or data frame specified in x (data), specification of func-
tion arguments (args), and list with results (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

112 na.coverage

References

Enders, C. K. (2010). Applied missing data analysis. Guilford Press.

Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual Review of
Psychology, 60, 549-576. https://doi.org/10.1146/annurev.psych.58.110405.085530

van Buuren, S. (2018). Flexible imputation of missing data (2nd ed.). Chapman & Hall.

See Also

as.na, na.as, na.coverage, na.descript, na.indicator, na.pattern, na.prop, na.test

Examples

dat <- data.frame(x1 = c(1, NA, 2, 5, 3, NA, 5, 2),
x2 = c(4, 2, 5, 1, 5, 3, 4, 5),
x3 = c(NA, 3, 2, 4, 5, 6, NA, 2),
x4 = c(5, 6, 3, NA, NA, 4, 6, NA))

Auxiliary variables
na.auxiliary(dat)

na.coverage Variance-Covariance Coverage

Description

This function computes the proportion of cases that contributes for the calculation of each variance
and covariance.

Usage

na.coverage(x, tri = c("both", "lower", "upper"), digits = 2, as.na = NULL,
check = TRUE, output = TRUE)

Arguments

x a matrix or data frame.

tri a character string or character vector indicating which triangular of the matrix to
show on the console, i.e., both for upper and lower triangular, lower (default)
for the lower triangular, and upper for the upper triangular.

digits an integer value indicating the number of decimal places to be used for display-
ing proportions.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

check logical: if TRUE, argument specification is checked.

output logical: if TRUE, output is shown on the console.

na.descript 113

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, matrix or data frame specified in x (data), specification of func-
tion arguments (args), and list with results (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Enders, C. K. (2010). Applied missing data analysis. Guilford Press.

Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual Review of
Psychology, 60, 549-576. https://doi.org/10.1146/annurev.psych.58.110405.085530

van Buuren, S. (2018). Flexible imputation of missing data (2nd ed.). Chapman & Hall.

See Also

write.result, as.na, na.as, na.auxiliary, na.descript, na.indicator, na.pattern, na.prop,
na.test

Examples

dat <- data.frame(x = c(1, NA, NA, 6, 3),
y = c(7, NA, 8, 9, NA),
z = c(2, NA, 3, NA, 5))

Compute variance-covariance coverage
na.coverage(dat)

Not run:
Write Results into a Excel file
result <- na.coverage(dat, output = FALSE)
write.result(result, "Coverage.xlsx")
End(Not run)

na.descript Descriptive Statistics for Missing Data

Description

This function computes descriptive statistics for missing data, e.g. number (of missing values, and
summary statistics for the number (

Usage

na.descript(x, table = FALSE, digits = 2, as.na = NULL, check = TRUE, output = TRUE)

114 na.descript

Arguments

x a matrix or data frame.

table logical: if TRUE, a frequency table with number of observed values ("nObs"),
percent of observed values ("pObs"), number of missing values ("nNA"), and
percent of missing values ("pNA") is printed for each variable on the console.

digits an integer value indicating the number of decimal places to be used for display-
ing percentages.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

check logical: if TRUE, argument specification is checked.

output logical: if TRUE, output is shown on the console.

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, matrix or data frame specified in x (data), specification of func-
tion arguments (args), and list with results (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Enders, C. K. (2010). Applied missing data analysis. Guilford Press.

Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual Review of
Psychology, 60, 549-576. https://doi.org/10.1146/annurev.psych.58.110405.085530

van Buuren, S. (2018). Flexible imputation of missing data (2nd ed.). Chapman & Hall.

See Also

write.result, as.na, na.as, na.auxiliary, na.coverage, na.indicator, na.pattern, na.prop,
na.test

Examples

dat <- data.frame(x1 = c(1, NA, 2, 5, 3, NA, 5, 2),
x2 = c(4, 2, 5, 1, 5, 3, 4, 5),
x3 = c(NA, 3, 2, 4, 5, 6, NA, 2),
x4 = c(5, 6, 3, NA, NA, 4, 6, NA))

Descriptive statistics for missing data
na.descript(dat)

Descriptive statistics for missing data, print results with 3 digits
na.descript(dat, digits = 3)

Descriptive statistics for missing data, convert value 2 to NA

na.indicator 115

na.descript(dat, as.na = 2)

Descriptive statistics for missing data with frequency table
na.descript(dat, table = TRUE)

Not run:
Write Results into a Excel file
result <- na.descript(dat, table = TRUE, output = FALSE)
write.result(result, "NA_Descriptives.xlsx")
End(Not run)

na.indicator Missing Data Indicator Matrix

Description

This function creates a missing data indicator matrix R that denotes whether values are observed or
missing, i.e., r = 1 if a value is observed, and r = 0 if a value is missing.

Usage

na.indicator(x, as.na = NULL, check = TRUE)

Arguments

x a matrix or data frame.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

check logical: if TRUE, argument specification is checked.

Value

Returns a matrix or data frame with r = 1 if a value is observed, and r = 0 if a value is missing.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Enders, C. K. (2010). Applied missing data analysis. Guilford Press.

Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual Review of
Psychology, 60, 549-576. https://doi.org/10.1146/annurev.psych.58.110405.085530

van Buuren, S. (2018). Flexible imputation of missing data (2nd ed.). Chapman & Hall.

See Also

as.na, na.as, na.auxiliary, na.coverage, na.descript, na.pattern, na.prop, na.test

116 na.pattern

Examples

dat <- data.frame(x = c(1, NA, NA, 6, 3),
y = c(7, NA, 8, 9, NA),
z = c(2, NA, 3, NA, 5))

Create missing data indicator matrix \eqn{R}
na.indicator(dat)

na.pattern Missing Data Pattern

Description

This function computes a summary of missing data patterns, i.e., number (

Usage

na.pattern(x, order = FALSE, digits = 2, as.na = NULL, check = TRUE, output = TRUE)

Arguments

x a matrix or data frame with incomplete data, where missing values are coded as
NA.

order logical: if TRUE, variables are ordered from left to right in increasing order of
missing values.

digits an integer value indicating the number of decimal places to be used for display-
ing percentages.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

check logical: if TRUE, argument specification is checked.

output logical: if TRUE, output is shown.

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, matrix or data frame specified in x (data), specification of func-
tion arguments (args), list with results (result), and a vector with the number of missing data
pattern for each case (pattern).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

na.prop 117

References

Enders, C. K. (2010). Applied missing data analysis. Guilford Press.

Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual Review of
Psychology, 60, 549-576. https://doi.org/10.1146/annurev.psych.58.110405.085530

van Buuren, S. (2018). Flexible imputation of missing data (2nd ed.). Chapman & Hall.

See Also

write.result, as.na, na.as, na.auxiliary, na.coverage, na.descript, na.indicator, na.prop,
na.test

Examples

dat <- data.frame(x = c(1, NA, NA, 6, 3),
y = c(7, NA, 8, 9, NA),
z = c(2, NA, 3, NA, 5))

Compute a summary of missing data patterns
dat.pattern <- na.pattern(dat)

Vector of missing data pattern for each case
dat.pattern$pattern
Data frame without cases with missing data pattern 2 and 5
dat[!dat.pattern$pattern %in% c(2, 5),]

Not run:
Write Results into a Excel file
result <- na.pattern(dat, output = FALSE)
write.result(result, "NA_Pattern.xlsx")
End(Not run)

na.prop Proportion of Missing Data for Each Case

Description

This function computes the proportion of missing data for each case in a matrix or data frame.

Usage

na.prop(x, digits = 2, as.na = NULL, check = TRUE)

Arguments

x a matrix or data frame.

digits an integer value indicating the number of decimal places to be used for display-
ing proportions.

118 na.test

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

check logical: if TRUE, argument specification is checked.

Value

Returns a numeric vector with the same length as the number of rows in x containing the proportion
of missing data.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Enders, C. K. (2010). Applied missing data analysis. Guilford Press.

Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual Review of
Psychology, 60, 549-576. https://doi.org/10.1146/annurev.psych.58.110405.085530

van Buuren, S. (2018). Flexible imputation of missing data (2nd ed.). Chapman & Hall.

See Also

as.na, na.as, na.auxiliary, na.coverage, na.descript, na.indicator, na.pattern, na.test

Examples

dat <- data.frame(x = c(1, NA, NA, 6, 3),
y = c(7, NA, 8, 9, NA),
z = c(2, NA, 3, NA, 5))

Compute proportion of missing data (\code{NA}) for each case in the data frame
na.prop(dat)

na.test Little’s Missing Completely at Random (MCAR) Test

Description

This function performs Little’s Missing Completely at Random (MCAR) test

Usage

na.test(x, digits = 2, p.digits = 3, as.na = NULL, check = TRUE, output = TRUE)

na.test 119

Arguments

x a matrix or data frame with incomplete data, where missing values are coded as
NA.

digits an integer value indicating the number of decimal places to be used for display-
ing results.

p.digits an integer value indicating the number of decimal places to be used for display-
ing the p-value.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

check logical: if TRUE, argument specification is checked.

output logical: if TRUE, output is shown.

Details

Little (1988) proposed a multivariate test of Missing Completely at Random (MCAR) that tests
for mean differences on every variable in the data set across subgroups that share the same miss-
ing data pattern by comparing the observed variable means for each pattern of missing data with
the expected population means estimated using the expectation-maximization (EM) algorithm (i.e.,
EM maximum likelihood estimates). The test statistic is the sum of the squared standardized differ-
ences between the subsample means and the expected population means weighted by the estimated
variance-covariance matrix and the number of observations within each subgroup (Enders, 2010).
Under the null hypothesis that data are MCAR, the test statistic follows asymptotically a chi-square
distribution with

∑
kj − k degrees of freedom, where kj is the number of complete variables for

missing data pattern j, and k is the total number of variables. A statistically significant result pro-
vides evidence against MCAR.

Note that Little’s MCAR test has a number of problems (see Enders, 2010). First, the test does not
identify the specific variables that violates MCAR, i.e., the test does not identify potential corre-
lates of missingness (i.e., auxiliary variables). Second, the test is based on multivariate normality,
i.e., under departure from the normality assumption the test might be unreliable unless the sample
size is large and is not suitable for categorical variables. Third, the test investigates mean differ-
ences assuming that the missing data pattern share a common covariance matrix, i.e., the test cannot
detect covariance-based deviations from MCAR stemming from a Missing at Random (MAR) or
Missing Not at Random (MNAR) mechanism because MAR and MNAR mechanisms can also pro-
duce missing data subgroups with equal means. Fourth, simulation studies suggest that Little’s
MCAR test suffers from low statistical power, particularly when the number of variables that vi-
olate MCAR is small, the relationship between the data and missingness is weak, or the data are
MNAR (Thoemmes & Enders, 2007). Fifth, the test can only reject, but cannot prove the MCAR
assumption, i.e., a statistically not significant result and failing to reject the null hypothesis of the
MCAR test does not prove the null hypothesis that the data is MCAR. Finally, under the null hy-
pothesis the data are actually MCAR or MNAR, while a statistically significant result indicates that
missing data are MAR or MNAR, i.e., MNAR cannot be ruled out regardless of the result of the
test.

This function is based on the prelim.norm function in the norm package which can handle about
30 variables. With more than 30 variables specified in the argument x, the prelim.norm function
might run into numerical problems leading to results that are not trustworthy. In this case it is rec-
ommended to reduce the number of variables specified in the argument x. If the number of variables

120 print.misty.object

cannot be reduced, it is recommended to use the LittleMCAR function in the BaylorEdPsych pack-
age which can deal with up to 50 variables. However, this package was removed from the CRAN
repository and needs to be obtained from the archive along with the mvnmle which is needed for us-
ing the LittleMCAR function. Note that the mcar_test function in the naniar package is also based
on the prelim.norm function which results are not trustworthy whenever the warning message In
norm::prelim.norm(data) : NAs introduced by coercion to integer range is printed on the
console.

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, matrix or data frame specified in x (data), specification of func-
tion arguments (args), list with results (result).

Note

Code is adapted from the R function by Eric Stemmler: tinyurl.com/r-function-for-MCAR-test

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Enders, C. K. (2010). Applied missing data analysis. Guilford Press.

Thoemmes, F., & Enders, C. K. (2007, April). A structural equation model for testing whether
data are missing completely at random. Paper presented at the annual meeting of the American
Educational Research Association, Chicago, IL.

Little, R. J. A. (1988). A test of Missing Completely at Random for multivariate data with missing
values. Journal of the American Statistical Association, 83, 1198-1202. https://doi.org/10.2307/2290157

See Also

as.na, na.as, na.auxiliary, na.coverage, na.descript, na.indicator, na.pattern, na.prop.

Examples

na.test(airquality)

print.misty.object Print misty.object object

Description

This function prints the misty.object object

print.misty.object 121

Usage

S3 method for class 'misty.object'
print(x,

print = x$args$print, tri = x$args$tri, freq = x$args$freq,
hypo = x$args$hypo, descript = x$args$descript, effsize = x$args$effsize,
split = x$args$split, table = x$args$table, digits = x$args$digits,
p.digits = x$args$p.digits, icc.digits = x$args$icc.digits,
sort.var = x$args$sort.var, order = x$args$order, check = TRUE, ...)

Arguments

x misty.object object.

print a character string or character vector indicating which results to to be printed on
the console.

tri a character string or character vector indicating which triangular of the matrix
to show on the console, i.e., both for upper and lower triangular, lower for the
lower triangular, and upper for the upper triangular.

freq logical: if TRUE, absolute frequencies will be included in the cross tabulation
(crosstab() function).

hypo logical: if TRUE, null and alternative hypothesis are shown on the console (test.t,
test.welch, test.z function).

descript logical: if TRUE, descriptive statistics are shown on the console (test.t, test.welch,
test.z function).

effsize logical: if TRUE, effect size measure(s) is shown on the console (test.t, test.welch,
test.z function).

split logical: if TRUE, output table is split by variables when specifying more than one
variable in x (freq).

table logical: if TRUE, a frequency table with number of observed values ("nObs"),
percent of observed values ("pObs"), number of missing values ("nNA"), and
percent of missing values ("pNA") is printed for each variable on the console
(na.descript() function).

digits an integer value indicating the number of decimal places digits to be used for
displaying results.

p.digits an integer indicating the number of decimal places to be used for displaying
p-values.

icc.digits an integer indicating the number of decimal places to be used for displaying intr-
aclass correlation coefficients (multilevel.descript() and multilevel.icc()
function).

sort.var logical: if TRUE, output is sorted by variables.

order logical: if TRUE, variables are ordered from left to right in increasing order of
missing values (na.descript() function).

check logical: if TRUE, argument specification is checked.

... further arguments passed to or from other methods.

122 read.mplus

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

See Also

item.alpha, ci.mean.diff, ci.mean, ci.median, ci.prop.diff, ci.prop, ci.sd, ci.var, cohens.d,
collin.diag, cor.cont, cor.matrix, cor.cramer, crosstab, descript, eta.sq, freq, test.levene,
multilevel.descript, multilevel.r2, na.auxiliary, na.coverage, na.descript, na.pattern,
item.omega, cor.phi, cor.poly, size.cor, size.mean, size.prop, test.levene, test.t, test.welch,
test.z.

read.mplus Read Mplus Data File and Variable Names

Description

This function reads a Mplus data file and/or Mplus input/output file to return a data frame with
variable names extracted from the Mplus input/output file.

Usage

read.mplus(file, sep = "", input = NULL, print = FALSE, return.var = FALSE,
fileEncoding = "UTF-8-BOM", check = TRUE)

Arguments

file a character string indicating the name of the Mplus data file with or without the
file extension .dat, e.g., "Mplus_Data.dat" or "Mplus_Data". Note that it is
not necessary to specify this argument when return.var = TRUE.

sep a character string indicating the field separator (i.e., delimiter) used in the data
file specified in file. By default, the separator is ’white space’, i.e., one or more
spaces, tabs, newlines or carriage returns.

input a character string indicating the Mplus input (.inp) or output file (.out) in
which the variable names are specified in the VARIABLE: section. Note that if
input = NULL, this function is equivalent to read.table(file).

print logical: if TRUE, variable names are printed on the console.

return.var logical: if TRUE, the function returns the variable names extracted from the
Mplus input or output file only.

fileEncoding character string declaring the encoding used on file so the character data can
be re-encoded. See df.sort.

check logical: if TRUE, argument specification is checked.

Value

A data frame containing a representation of the data in the file.

read.sav 123

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Muthen, L. K., & Muthen, B. O. (1998-2017). Mplus User’s Guide (8th ed.). Muthen & Muthen.

See Also

run.mplus, write.mplus, read.sav, read.xlsx

Examples

Not run:

Read Mplus data file and variable names extracted from the Mplus input file
dat <- read.mplus("Mplus_Data.dat", input = "Mplus_Input.inp")

Read Mplus data file and variable names extracted from the Mplus input file,
print variable names on the console
dat <- read.mplus("Mplus_Data.dat", input = "Mplus_Input.inp", print = TRUE)

Read variable names extracted from the Mplus input file
varnames <- read.mplus(input = "Mplus_Input.inp", return.var = TRUE)

End(Not run)

read.sav Read SPSS File

Description

This function calls the read_spss function in the haven package by Hadley Wickham and Evan
Miller (2019) to read an SPSS file.

Usage

read.sav(file, use.value.labels = FALSE, use.missings = TRUE, formats = FALSE,
label = TRUE, labels = TRUE, missing = FALSE, widths = FALSE,
as.data.frame = TRUE, check = TRUE)

Arguments

file a character string indicating the name of the SPSS data file with or without file
extension ’.sav’, e.g., "My_SPSS_Data.sav" or "My_SPSS_Data".

use.value.labels

logical: if TRUE, variables with value labels are converted into factors.

use.missings logical: if TRUE (default), user-defined missing values are converted into NAs.

124 read.sav

formats logical: if TRUE, variable formats are shown in an attribute for all variables.

label logical: if TRUE (default), variable labels are shown in an attribute for all vari-
ables.

labels logical: if TRUE (default), value labels are shown in an attribute for all variables.

missing logical: if TRUE, value labels for user-defined missings are shown in an attribute.
for all variables.

widths logical: if TRUE, widths are shown in an attribute for all variables.

as.data.frame logical: if TRUE (default), function returns a regular data frame (default); if
FALSE function returns a tibble.

check logical: if TRUE, argument specification is checked.

Value

Returns a data frame or tibble.

Author(s)

Hadley Wickham and Evan Miller

References

Hadley Wickham and Evan Miller (2019). haven: Import and Export ’SPSS’, ’Stata’ and ’SAS’
Files. R package version 2.1.1.https://CRAN.R-project.org/package=haven

See Also

write.sav, read.xlsx, read.mplus

Examples

Not run:

Read SPSS data
read.sav("SPSS_Data.sav")
read.sav("SPSS_Data")

Read SPSS data, convert variables with value labels into factors
read.sav("SPSS_Data.sav", use.value.labels = TRUE)

Read SPSS data, user-defined missing values are not converted into NAs
read.sav("SPSS_Data.sav", use.missing = FALSE)

Read SPSS data as tibble
read.sav("SPSS_Data.sav", as.data.frame = FALSE)

End(Not run)

https://CRAN.R-project.org/package=haven

read.xlsx 125

read.xlsx Read Excel File

Description

This function calls the read_xlsx() function in the readxl package by Hadley Wickham and Jen-
nifer Bryan (2019) to read an Excel file (.xlsx).

Usage

read.xlsx(file, sheet = NULL, header = TRUE, range = NULL,
coltypes = c("skip", "guess", "logical", "numeric", "date", "text", "list"),

na = "", trim = TRUE, skip = 0, nmax = Inf, guessmax = min(1000, nmax),
progress = readxl::readxl_progress(), name.repair = "unique",
as.data.frame = TRUE, check = TRUE)

Arguments

file a character string indicating the name of the Excel data file with or without file
extension ’.xlsx’, e.g., "My_Excel_Data.xlsx" or "My_Excel_Data".

sheet a character string indicating the name of a sheet or a numeric value indicating
the position of the sheet to read. By default the first sheet will be read.

header logical: if TRUE (default), the first row is used as column names, if FALSE default
names are used. A character vector giving a name for each column can also
be used. If coltypes as a vector is provided, colnames can have one entry
per column, i.e. have the same length as coltypes, or one entry per unskipped
column.

range a character string indicating the cell range to read from, e.g. typical Excel ranges
like "B3:D87", possibly including the sheet name like "Data!B2:G14". Inter-
preted strictly, even if the range forces the inclusion of leading or trailing empty
rows or columns. Takes precedence over skip, nmax and sheet.

coltypes a character vector containing one entry per column from these options "skip",
"guess", "logical", "numeric", "date", "text" or "list". If exactly one
coltype is specified, it will be recycled. By default (i.e., coltypes = NULL)
coltypes will be guessed. The content of a cell in a skipped column is never
read and that column will not appear in the data frame output. A list cell loads
a column as a list of length 1 vectors, which are typed using the type guessing
logic from coltypes = NULL, but on a cell-by-cell basis.

na a character vector indicating strings to interpret as missing values. By default,
blank cells will be treated as missing data.

trim logical: if TRUE (default), leading and trailing whitespace will be trimmed.

skip a numeric value indicating the minimum number of rows to skip before reading
anything, be it column names or data. Leading empty rows are automatically
skipped, so this is a lower bound. Ignored if the argument range is specified.

126 read.xlsx

nmax a numeric value indicating the maximum number of data rows to read. Trailing
empty rows are automatically skipped, so this is an upper bound on the number
of rows in the returned data frame. Ignored if the argument range is specified.

guessmax a numeric value indicating the maximum number of data rows to use for guess-
ing column types.

progress display a progress spinner? By default, the spinner appears only in an interactive
session, outside the context of knitting a document, and when the call is likely
to run for several seconds or more.

name.repair a character string indicating the handling of column names. By default, the
function ensures column names are not empty and are unique.

as.data.frame logical: if TRUE (default), function returns a regular data frame (default); if
FALSE function returns a tibble.

check logical: if TRUE, argument specification is checked.

Value

Returns a data frame or tibble.

Author(s)

Hadley Wickham and Jennifer Bryan

See Also

write.xlsx, read.sav, read.mplus

Examples

Not run:

Read Excel file (.xlsx)
read.xlsx("data.xlsx")

Read Exce l file (.xlsx), use default names as column names
read.xlsx("data.xlsx", header = FALSE)

Read Excel file (.xlsx), interpret -99 as missing values
read.xlsx("data.xlsx", na = "-99")

Read Excel file (.xlsx), use x1, x2, and x3 as column names
read.xlsx("data.xlsx", header = c("x1", "x2", "x3"))

Read Excel file (.xlsx), read cells A1:B5
read.xlsx("data.xlsx", range = "A1:B5")

Read Excel file (.xlsx), skip 2 rows before reading data
read.xlsx("data.xlsx", skip = 2)

Read Excel file (.xlsx), return a tibble
read.xlsx("data.xlsx", as.data.frame = FALSE)

rec 127

End(Not run)

rec Recode Variable

Description

This function recodes a numeric vector, character vector, or factor according to recode specifica-
tions.

Usage

rec(x, spec, as.factor = FALSE, levels = NULL, as.na = NULL, table = FALSE,
check = TRUE)

Arguments

x a numeric vector, character vector or factor.

spec a character string of recode specifications (see ’Details’).

as.factor logical: if TRUE, character vector will be coerced to a factor.

levels a character vector for specifying the levels in the returned factor.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

table logical: if TRUE, a cross table variable x recoded variable is printed on the con-
sole.

check logical: if TRUE, argument specification is checked.

Details

Recode specifications appear in a character string, separated by semicolons (see the examples be-
low), of the form input = output. If an input value satisfies more than one specification, then the
first (from left to right) applies. If no specification is satisfied, then the input value is carried over
to the result. NA is allowed in input and output. Several recode specifications are supported:

- single value For example, 0 = NA

- vector of values For example, c(7, 8, 9) = ’high’

- range of values For example, 7:9 = ’C’. The special values lo (lowest value) and hi (highest value)
may appear in a range. For example, lo:10 = 1. Note that : is not the R sequence operator. In
addition you may not use : with the collect operator, e.g., c(1, 3, 5:7) will cause an error.

- else For example, else = NA. Everything that does not fit a previous specification. Note that else
matches all otherwise unspecified values on input, including NA.

Value

Returns a numeric vector with the same length as x containing the recoded variable.

128 rec

Note

This function was adapted from the recode() function in the car package by John Fox and Sanford
Weisberg (2019).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Fox, J., & Weisberg S. (2019). An R Companion to Applied Regression (3rd ed.). Thousand Oaks
CA: Sage. URL: https://socialsciences.mcmaster.ca/jfox/Books/Companion/

See Also

item.reverse

Examples

#--------------------------------------
Numeric vector
x.num <- c(1, 2, 4, 5, 6, 8, 12, 15, 19, 20)

Recode 5 = 50 and 19 = 190
rec(x.num, "5 = 50; 19 = 190")

Recode 1, 2, and 5 = 100 and 4, 6, and 7 = 200 and else = 300
rec(x.num, "c(1, 2, 5) = 100; c(4, 6, 7) = 200; else = 300")

Recode lowest value to 10 = 100 and 11 to highest value = 200
rec(x.num, "lo:10 = 100; 11:hi = 200")

Recode 5 = 50 and 19 = 190 and check recoding
rec(x.num, "5 = 50; 19 = 190", table = TRUE)

#--------------------------------------
Character vector
x.chr <- c("a", "c", "f", "j", "k")

Recode a to x
rec(x.chr, "'a' = 'X'")

Recode a and f to x, c and j to y, and else to z
rec(x.chr, "c('a', 'f') = 'x'; c('c', 'j') = 'y'; else = 'z'")

Recode a to x and coerce to a factor
rec(x.chr, "'a' = 'X'", as.factor = TRUE)

#--------------------------------------
Factor
x.factor <- factor(c("a", "b", "a", "c", "d", "d", "b", "b", "a"))

run.mplus 129

Recode a to x, factor levels ordered alphabetically
rec(x.factor, "'a' = 'x'")

Recode a to x, user-defined factor levels
rec(x.factor, "'a' = 'x'", levels = c("x", "b", "c", "d"))

run.mplus Run Mplus Models

Description

This function runs a group of Mplus models (.inp files) located within a single directory or nested
within subdirectories.

Usage

run.mplus(target = getwd(), recursive = FALSE, filefilter = NULL, showOutput = FALSE,
replaceOutfile = c("always", "never", "modifiedDate"), logFile = NULL,
Mplus = "Mplus", killOnFail = TRUE, local_tmpdir = FALSE)

Arguments

target a character string indicating the directory containing Mplus input files (.inp)
to run or the single .inp file to be run. May be a full path, relative path, or a
filename within the working directory.

recursive logical: if TRUE, run all models nested in subdirectories within directory. Not
relevant if target is a single file.

filefilter a Perl regular expression (PCRE-compatible) specifying particular input files to
be run within directory. See regex or http://www.pcre.org/pcre.txt for details
about regular expression syntax. Not relevant if target is a single file.

showOutput logical: if TRUE, estimation output (TECH8) is show on the R console. Note that
if run within Rgui, output will display within R, but if run via Rterm, a separate
window will appear during estimation.

replaceOutfile a character string for specifying three settings: "always" (default), which runs
all models, regardless of whether an output file for the model exists, "never",
which does not run any model that has an existing output file, and "modifiedDate",
which only runs a model if the modified date for the input file is more recent than
the output file modified date.

logFile a character string specifying a file that records the settings passed into the func-
tion and the models run (or skipped) during the run.

Mplus a character string for specifying the name or path of the Mplus executable to
be used for running models. This covers situations where Mplus is not in the
system’s path, or where one wants to test different versions of the Mplus pro-
gram.Note that there is no need to specify this argument for most users since it
has intelligent defaults.

130 run.mplus

killOnFail logical: if TRUE, all processes named mplus.exe when mplus.run() does not
terminate normally are killed. Windows only.

local_tmpdir logical: if TRUE, the TMPDIR environment variable is set to the location of
the .inp file prior to execution. This is useful in Monte Carlo studies where
many instances of Mplus may run in parallel and we wish to avoid collisions in
temporary files among processes. Linux/Mac only.

Details

Note that this function is a copy of the runModels() function in the MplusAutomation package
by Michael Hallquist.

Value

None.

Note

This function is a copy of the runModels() function in the MplusAutomation package by Michael
Hallquist and Joshua Wiley (2018).

Author(s)

Michael Hallquist

References

Hallquist, M. N. & Wiley, J. F. (2018). MplusAutomation: An R package for facilitating large-scale
latent variable analyses in Mplus. Structural Equation Modeling: A Multidisciplinary Journal, 25,
621-638. https://doi.org/10.1080/10705511.2017.1402334.

Muthen, L. K., & Muthen, B. O. (1998-2017). Mplus User’s Guide (8th ed.). Muthen & Muthen.

Examples

Not run:
Run Mplus models located within a single directory
run.mplus(Mplus = "C:/Program Files/Mplus/Mplus.exe")

Run Mplus models located nested within subdirectories
run.mplus(recursive = TRUE,

Mplus = "C:/Program Files/Mplus/Mplus.exe")

End(Not run)

rwg.lindell 131

rwg.lindell Lindell, Brandt and Whitney (1999) r*wg(j) Within-Group Agreement
Index for Multi-Item Scales

Description

This function computes r*wg(j) within-group agreement index for multi-item scales as described in
Lindell, Brandt and Whitney (1999).

Usage

rwg.lindell(x, cluster, A = NULL, ranvar = NULL, z = TRUE, expand = TRUE, na.omit = FALSE,
as.na = NULL, check = TRUE)

Arguments

x a matrix or data frame with numeric vectors.

cluster a vector representing the nested grouping structure (i.e., group or cluster vari-
able).

A a numeric value indicating the number of discrete response options of the items
from which the random variance is computed based on (A2 − 1)/12. Note that
either the argument j or the argumentranvar is specified.

ranvar a numeric value indicating the random variance to which the mean of the item
variance is divided. Note that either the argument j or the argumentranvar is
specified.

z logical: if TRUE, Fisher z-transformation based on the formula z = 0.5∗log((1+
r)/(1− r)) is applied to the vector of r*wg(j) estimates.

expand logical: if TRUE, vector of r*wg(j) estimates is expanded to match the input
vector x.

na.omit logical: if TRUE, incomplete cases are removed before conducting the analysis
(i.e., listwise deletion).

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis. Note that as.na() function is
only applied to x, but not to cluster.

check logical: if TRUE, argument specification is checked.

Details

The r*wg(j) index is calculated by dividing the mean of the item variance by the expected random
variance (i.e., null distribution). The default null distribution in most research is the rectangular
or uniform distribution calculated with σ2

eu = (A2 − 1)/12, where A is the number of discrete
response options of the items. However, what constitutes a reasonable standard for random variance
is highly debated. Note that the r*wg(j) allows that the mean of the item variances to be larger than
the expected random variances, i.e., r*wg(j) values can be negative.

132 rwg.lindell

Note that the rwg.j.lindell() function in the multilevel package uses listwise deletion by default,
while the rwg.lindell() function uses all available information to compute the r*wg(j) agreement
index by default. In order to obtain equivalent results in the presence of missing values, listwise
deletion (na.omit = TRUE) needs to be applied.

Examples for the application of r*wg(j) within-group agreement index for multi-item scales can be
found in Bardach, Yanagida, Schober and Lueftenegger (2018), Bardach, Lueftenegger, Yanagida,
Schober and Spiel (2018), and Bardach, Lueftenegger, Yanagida, Spiel and Schober (2019).

Value

Returns a numeric vector containing r*wg(j) agreement index for multi-item scales with the same
length as cluster if expand = TRUE or a data frame with following entries if expand = FALSE:

cluster cluster identifier
n cluster size x
rwg.lindell r*wg(j) estimate for each cluster
z.rwg.lindell Fisher z-transformed r*wg(j) estimate for each cluster

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Bardach, L., Lueftenegger, M., Yanagida, T., & Schober, B. (2019). Achievement or agreement -
Which comes first? Clarifying the temporal ordering of achievement and within-class consensus on
classroom goal structures. Learning and Instruction, 61, 72-83. https://doi.org/10.1016/j.learninstruc.2019.01.003

Bardach, L., Lueftenegger, M., Yanagida, T., Schober, B. & Spiel, C. (2019). The role of within-
class consensus on mastery goal structures in predicting socio-emotional outcomes. British Journal
of Educational Psychology, 89, 239-258. https://doi.org/10.1111/bjep.12237

Bardach, L., Yanagida, T., Schober, B. & Lueftenegger, M. (2018). Within-class consensus on class-
room goal structures: Relations to achievement and achievement goals in mathematics and language
classes. Learning and Individual Differences, 67, 78-90. https://doi.org/10.1016/j.lindif.2018.07.002

Lindell, M. K., Brandt, C. J., & Whitney, D. J. (1999). A revised index of interrater agree-
ment for multi-item ratings of a single target. Applied Psychological Measurement, 23, 127-135.
https://doi.org/10.1177/01466219922031257

O’Neill, T. A. (2017). An overview of interrater agreement on Likert scales for researchers and
practitioners. Frontiers in Psychology, 8, Article 777. https://doi.org/10.3389/fpsyg.2017.00777

See Also

cluster.scores

Examples

dat <- data.frame(id = c(1, 2, 3, 4, 5, 6, 7, 8, 9),
cluster = c(1, 1, 1, 2, 2, 2, 3, 3, 3),

size.cor 133

x1 = c(2, 3, 2, 1, 1, 2, 4, 3, 5),
x2 = c(3, 2, 2, 1, 2, 1, 3, 2, 5),
x3 = c(3, 1, 1, 2, 3, 3, 5, 5, 4))

Compute Fisher z-transformed r*wg(j) for a multi-item scale with A = 5 response options
rwg.lindell(dat[, c("x1", "x2", "x3")], cluster = dat$cluster, A = 5)

Compute Fisher z-transformed r*wg(j) for a multi-item scale with a random variance of 2
rwg.lindell(dat[, c("x1", "x2", "x3")], cluster = dat$cluster, ranvar = 2)

Compute r*wg(j) for a multi-item scale with A = 5 response options
rwg.lindell(dat[, c("x1", "x2", "x3")], cluster = dat$cluster, A = 5, z = FALSE)

Compute Fisher z-transformed r*wg(j) for a multi-item scale with A = 5 response options,
do not expand the vector
rwg.lindell(dat[, c("x1", "x2", "x3")], cluster = dat$cluster, A = 5, expand = FALSE)

size.cor Sample Size Determination for Testing Pearson’s Correlation Coeffi-
cient

Description

This function performs sample size computation for testing Pearson’s product-moment correlation
coefficient based on precision requirements (i.e., type-I-risk, type-II-risk and an effect size).

Usage

size.cor(rho, delta, alternative = c("two.sided", "less", "greater"),
alpha = 0.05, beta = 0.1, check = TRUE, output = TRUE)

Arguments

rho a number indicating the correlation coefficient under the null hypothesis, ρ.0.

delta a numeric value indicating the minimum difference to be detected, δ.

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less".

alpha type-I-risk, α.

beta type-II-risk, β.

check logical: if TRUE, argument specification is checked.

output logical: if TRUE, output is shown.

134 size.mean

Value

Returns an object of class misty.object with following entries:

call function call
type type of the test (i.e., correlation coefficient)
args specification of function arguments
result list with the result, i.e., optimal sample size

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>,

References

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
New York: John Wiley & Sons.

Rasch, D., Pilz, J., Verdooren, L. R., & Gebhardt, G. (2011). Optimal experimental design with R.
Boca Raton: Chapman & Hall/CRC.

See Also

size.mean, size.prop

Examples

#--------------------------------------
H0: rho = 0.3, H1: rho != 0.3
alpha = 0.05, beta = 0.2, delta = 0.2

size.cor(rho = 0.3, delta = 0.2, alpha = 0.05, beta = 0.2)

#--------------------------------------
H0: rho <= 0.3, H1: rho > 0.3
alpha = 0.05, beta = 0.2, delta = 0.2

size.cor(rho = 0.3, delta = 0.2, alternative = "greater", alpha = 0.05, beta = 0.2)

size.mean Sample Size Determination for Testing Arithmetic Means

Description

This function performs sample size computation for the one-sample and two-sample t-test based on
precision requirements (i.e., type-I-risk, type-II-risk and an effect size).

size.mean 135

Usage

size.mean(delta, sample = c("two.sample", "one.sample"),
alternative = c("two.sided", "less", "greater"),
alpha = 0.05, beta = 0.1, check = TRUE, output = TRUE)

Arguments

delta a numeric value indicating the relative minimum difference to be detected, δ.

sample a character string specifying one- or two-sample t-test, must be one of "two.sample"
(default) or "one.sample".

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less".

alpha type-I-risk, α.

beta type-II-risk, β.

check logical: if TRUE, argument specification is checked.

output logical: if TRUE, output is shown.

Value

Returns an object of class misty.object with following entries:

call function call
type type of the test (i.e., arithmetic mean)
args specification of function arguments
result list with the result, i.e., optimal sample size

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>,

References

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
New York: John Wiley & Sons.

Rasch, D., Pilz, J., Verdooren, L. R., & Gebhardt, G. (2011). Optimal experimental design with R.
Boca Raton: Chapman & Hall/CRC.

See Also

size.prop, size.cor

Examples

#--------------------------------------
Two-sided one-sample test
H0: mu = mu.0, H1: mu != mu.0

136 size.prop

alpha = 0.05, beta = 0.2, delta = 0.5

size.mean(delta = 0.5, sample = "one.sample",
alternative = "two.sided", alpha = 0.05, beta = 0.2)

#--------------------------------------
One-sided one-sample test
H0: mu <= mu.0, H1: mu > mu.0
alpha = 0.05, beta = 0.2, delta = 0.5

size.mean(delta = 0.5, sample = "one.sample",
alternative = "greater", alpha = 0.05, beta = 0.2)

#--------------------------------------
Two-sided two-sample test
H0: mu.1 = mu.2, H1: mu.1 != mu.2
alpha = 0.01, beta = 0.1, delta = 1

size.mean(delta = 1, sample = "two.sample",
alternative = "two.sided", alpha = 0.01, beta = 0.1)

#--------------------------------------
One-sided two-sample test
H0: mu.1 <= mu.2, H1: mu.1 > mu.2
alpha = 0.01, beta = 0.1, delta = 1

size.mean(delta = 1, sample = "two.sample",
alternative = "greater", alpha = 0.01, beta = 0.1)

size.prop Sample Size Determination for Testing Proportions

Description

This function performs sample size computation for the one-sample and two-sample test for pro-
portions based on precision requirements (i.e., type-I-risk, type-II-risk and an effect size).

Usage

size.prop(pi = 0.5, delta, sample = c("two.sample", "one.sample"),
alternative = c("two.sided", "less", "greater"),
alpha = 0.05, beta = 0.1, correct = FALSE,
check = TRUE, output = TRUE)

Arguments

pi a number indicating the true value of the probability under the null hypothesis
(one-sample test), π.0 or a number indicating the true value of the probability in
group 1 (two-sample test), π.1.

size.prop 137

delta minimum difference to be detected, δ.

sample a character string specifying one- or two-sample proportion test, must be one of
"two.sample" (default) or "one.sample".

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "less" or "greater".

alpha type-I-risk, α.

beta type-II-risk, β.

correct a logical indicating whether continuity correction should be applied.

check logical: if TRUE, argument specification is checked.

output logical: if TRUE, output is shown.

Value

Returns an object of class misty.object with following entries:

call function call
type type of the test (i.e., proportion)
args specification of function arguments
result list with the result, i.e., optimal sample size

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>,

References

Fleiss, J. L., Levin, B., & Paik, M. C. (2003). Statistical methods for rates and proportions (3rd
ed.). John Wiley & Sons.

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
John Wiley & Sons.

Rasch, D., Pilz, J., Verdooren, L. R., & Gebhardt, G. (2011). Optimal experimental design with R.
Chapman & Hall/CRC.

See Also

size.mean, size.cor

Examples

#--------------------------------------
Two-sided one-sample test
H0: pi = 0.5, H1: pi != 0.5
alpha = 0.05, beta = 0.2, delta = 0.2

size.prop(pi = 0.5, delta = 0.2, sample = "one.sample",
alternative = "two.sided", alpha = 0.05, beta = 0.2)

138 skewness

#--------------------------------------
Two-sided one-sample test
H0: pi = 0.5, H1: pi != 0.5
alpha = 0.05, beta = 0.2, delta = 0.2
with continuity correction

size.prop(pi = 0.5, delta = 0.2, sample = "one.sample",
alternative = "two.sided", alpha = 0.05, beta = 0.2,
correct = TRUE)

#--------------------------------------
One-sided one-sample test
H0: pi <= 0.5, H1: pi > 0.5
alpha = 0.05, beta = 0.2, delta = 0.2

size.prop(pi = 0.5, delta = 0.2, sample = "one.sample",
alternative = "less", alpha = 0.05, beta = 0.2)

#--------------------------------------
Two-sided two-sample test
H0: pi.1 = pi.2 = 0.5, H1: pi.1 != pi.2
alpha = 0.01, beta = 0.1, delta = 0.2

size.prop(pi = 0.5, delta = 0.2, sample = "two.sample",
alternative = "two.sided", alpha = 0.01, beta = 0.1)

#--------------------------------------
One-sided two-sample test
H0: pi.1 <= pi.1 = 0.5, H1: pi.1 > pi.2
alpha = 0.01, beta = 0.1, delta = 0.2

size.prop(pi = 0.5, delta = 0.2, sample = "two.sample",
alternative = "greater", alpha = 0.01, beta = 0.1)

skewness Skewness

Description

This function computes the skewness.

Usage

skewness(x, as.na = NULL, check = TRUE)

Arguments

x a numeric vector.

std.coef 139

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

check logical: if TRUE, argument specification is checked.

Details

The same method for estimating skewness is used in SAS and SPSS. Missing values (NA) are
stripped before the computation. Note that at least 3 observations are needed to compute skew-
ness.

Value

Returns the estimated skewness of x.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
New York: John Wiley & Sons.

See Also

kurtosis

Examples

Set seed of the random number generation
set.seed(123)
Generate random numbers according to N(0, 1)
x <- rnorm(100)

Compute skewness
skewness(x)

std.coef Standardized Coefficients

Description

This function computes standardized coefficients for linear models estimated by using the lm()
function.

Usage

std.coef(model, print = c("all", "stdx", "stdy", "stdyx"), digits = 3, p.digits = 4,
check = TRUE, output = TRUE)

140 std.coef

Arguments

model a fitted model of class "lm".

print a character vector indicating which results to show, i.e. "all", for all results,
"stdx" for standardizing only the predictor, "stdy" for for standardizing only
the criterion, and "stdyx" for for standardizing both the predictor and the crite-
rion. Note that the default setting is depending on the level of measurement of
the predictors, i.e., if all predictors are continuous, the default setting is print
= "stdyx"; if all predictors are binary, the default setting is print = "stdy"; if
predictors are continuous and binary, the default setting is print = c("stdy",
"stdyx").

digits an integer value indicating the number of decimal places to be used for display-
ing results.

p.digits an integer value indicating the number of decimal places to be used for display-
ing the p-value.

check logical: if TRUE, argument specification is checked.

output logical: if TRUE, output is shown on the console.

Details

The slope β can be standardized with respect to only x, only y, or both y and x:

StdX(β1) = β1SD(x)

StdX(β1) standardizes with respect to x only and is interpreted as the change in y when x changes
one standard deviation referred to as SD(x).

StdY (β1) =
β1

SD(x)

StdY (β1) standardizes with respect to y only and is interpreted as the change in y standard devia-
tion units, referred to as SD(y), when x changes one unit.

StdY X(β1) = β1
SD(x)

SD(y)

StdY X(β1) standardizes with respect to both y and x and is interpreted as the change in y standard
deviation units when x changes one standard deviation.

Note that the StdY X(β1) and the StdY (β1) standardizations are not suitable for the slope of a
binary predictor because a one standard deviation change in a binary variable is generally not of
interest (Muthen, Muthen, & Asparouhov, 2016).

The standardization of the slope β3 in a regression model with an interaction term uses the product
of standard deviations SD(x1)SD(x2) rather than the standard deviation of the product SD(x1x2)
for the interaction variable x1x2 (see Wen, Marsh & Hau, 2010). Likewise, the standardization of
the slope β3 in a polynomial regression model with a quadratic term uses the product of standard
deviations SD(x)SD(x) rather than the standard deviation of the product SD(xx) for the quadratic
term x2.

std.coef 141

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, model specified in the model argument (model), specification of
function arguments (args), list with results (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Muthen, B. O., Muthen, L. K., & Asparouhov, T. (2016). Regression and mediation analysis using
Mplus. Muthen & Muthen.

Wen, Z., Marsh, H. W., & Hau, K.-T. (2010). Structural equation models of latent interactions: An
appropriate standardized solution and its scale-free properties. Structural Equation Modeling: A
Multidisciplinary Journal, 17, 1-22. https://doi.org/10.1080/10705510903438872

Examples

dat <- data.frame(x1 = c(3, 2, 4, 9, 5, 3, 6, 4, 5, 6, 3, 5),
x2 = c(1, 4, 3, 1, 2, 4, 3, 5, 1, 7, 8, 7),
x3 = c(0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1),
y = c(2, 7, 4, 4, 7, 8, 4, 2, 5, 1, 3, 8))

#----------------------------
Linear model

#...........
Regression model with continuous predictors
mod.lm1 <- lm(y ~ x1 + x2, data = dat)
std.coef(mod.lm1)

Print all standardized coefficients
std.coef(mod.lm1, print = "all")

#...........
Regression model with dichotomous predictor
mod.lm2 <- lm(y ~ x3, data = dat)
std.coef(mod.lm2)

#...........
Regression model with continuous and dichotomous predictors
mod.lm3 <- lm(y ~ x1 + x2 + x3, data = dat)
std.coef(mod.lm3)

#...........
Regression model with continuous predictors and an interaction term
mod.lm4 <- lm(y ~ x1*x2, data = dat)

#...........
Regression model with a quadratic term

142 test.levene

mod.lm5 <- lm(y ~ x1 + I(x1^2), data = dat)
std.coef(mod.lm5)

test.levene Levene’s Test for Homogeneity of Variance

Description

This function performs Levene’s test for homogeneity of variance across two or more independent
groups.

Usage

test.levene(formula, data, method = c("median", "mean"), conf.level = 0.95,
hypo = TRUE, descript = TRUE, digits = 2, p.digits = 3,
as.na = NULL, check = TRUE, output = TRUE)

Arguments

formula a formula of the form y ~ group where y is a numeric variable giving the data
values and group a numeric variable, character variable or factor with two or
more than two values or factor levels giving the corresponding groups.

data a matrix or data frame containing the variables in the formula formula.
method a character string specifying the method to compute the center of each group, i.e.

method = "median" (default) to compute the Levene’s test basd on the median
(aka Brown-Forsythe test) or method = "mean" to compute the Levene’s test
based on the arithmetic mean.

conf.level a numeric value between 0 and 1 indicating the confidence level of the interval.
hypo logical: if TRUE, null and alternative hypothesis are shown on the console.
descript logical: if TRUE, descriptive statistics are shown on the console.
digits an integer value indicating the number of decimal places to be used for display-

ing results.
p.digits an integer value indicating the number of decimal places to be used for display-

ing the p-value.
as.na a numeric vector indicating user-defined missing values, i.e. these values are

converted to NA before conducting the analysis.
check logical: if TRUE, argument specification is checked.
output logical: if TRUE, output is shown.

Details

Levene’s test is equivalent to a one-way analysis of variance (ANOVA) with the absolute deviations
of observations from the mean of each group as dependent variable (center = "mean"). Brown
and Forsythe (1974) modified the Levene’s test by using the absolute deviations of observations
from the median (center = "median"). By default, the Levene’s test uses the absolute deviations
of observations from the median.

test.t 143

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, formula (formula), data frame with the outcome and grouping
variable, (data), specification of function arguments (args), and a list with descriptive statistics
including confidence interval and an object of class "anova" (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Brown, M. B., & Forsythe, A. B. (1974). Robust tests for the equality of variances. Journal of the
American Statistical Association, 69, 364-367.

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
John Wiley & Sons.

See Also

t.test, aov

Examples

dat <- data.frame(y = c(2, 3, 4, 5, 5, 7, 8, 4, 5, 2, 4, 3),
group = c(1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3))

Levene's test based on the median with 95% confidence interval
test.levene(y ~ group, data = dat)

Levene's test based on the arithmetic mean with 95% confidence interval
test.levene(y ~ group, data = dat, method = "mean")

Levene's test based on the median with 99% confidence interval
test.levene(y ~ group, data = dat, conf.level = 0.99)

test.t t-Test

Description

This function performs one-sample, two-sample, and paired-sample t-tests.

144 test.t

Usage

test.t(x, ...)

Default S3 method:
test.t(x, y = NULL, mu = 0, paired = FALSE,

alternative = c("two.sided", "less", "greater"), conf.level = 0.95,
hypo = TRUE, descript = TRUE, effsize = FALSE, weighted = TRUE,
cor = TRUE, ref = NULL, correct = FALSE, digits = 2, p.digits = 4,
as.na = NULL, check = TRUE, output = TRUE, ...)

S3 method for class 'formula'
test.t(formula, data, alternative = c("two.sided", "less", "greater"),

conf.level = 0.95, hypo = TRUE, descript = TRUE, effsize = FALSE,
weighted = TRUE, cor = TRUE, ref = NULL, correct = FALSE, digits = 2,
p.digits = 4, as.na = NULL, check = TRUE, output = TRUE, ...)

Arguments

x a numeric vector of data values.

y a numeric vector of data values.

mu a numeric value indicating the population mean under the null hypothesis. Note
that the argument mu is only used when computing a one sample t-test.

paired logical: if TRUE, paired-samples t-test is computed.

alternative a character string specifying the alternative hypothesis, must be one of "two.sided"
(default), "greater" or "less".

conf.level a numeric value between 0 and 1 indicating the confidence level of the interval.

hypo logical: if TRUE, null and alternative hypothesis are shown on the console.

descript logical: if TRUE, descriptive statistics are shown on the console.

effsize logical: if TRUE, effect size measure Cohen’s d is shown on the console, see
cohens.d function.

weighted logical: if TRUE (default), the weighted pooled standard deviation is used to com-
pute Cohen’s d for a two-sample design (i.e., paired = FALSE), while standard
deviation of the difference scores is used to compute Cohen’s d for a paired-
sample design (i.e., paired = TRUE).

cor logical: if TRUE (default), paired = TRUE, and weighted = FALSE, Cohen’s d for
a paired-sample design while controlling for the correlation between the two sets
of measurement is computed. Note that this argument is only used in a paired-
sample design (i.e., paired = TRUE) when specifying weighted = FALSE.

ref character string "x" or "y" for specifying the reference reference group when
using the default test.t() function or a numeric value or character string in-
dicating the reference group in a two-sample design when using the formula
test.t() function. The standard deviation of the reference variable or ref-
erence group is used to standardized the mean difference to compute Cohen’s
d. Note that this argument is only used in a two-sample design (i.e., paired =
FALSE).

test.t 145

correct logical: if TRUE, correction factor to remove positive bias in small samples is
used.

digits an integer value indicating the number of decimal places to be used for display-
ing descriptive statistics and confidence interval.

p.digits an integer value indicating the number of decimal places to be used for display-
ing the p-value.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

check logical: if TRUE, argument specification is checked.

output logical: if TRUE, output is shown on the console.

formula in case of two sample t-test (i.e., paired = FALSE), a formula of the form y ~
group where group is a numeric variable, character variable or factor with two
values or factor levels giving the corresponding groups.

data a matrix or data frame containing the variables in the formula formula.

... further arguments to be passed to or from methods.

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, list with the input specified in x (data), specification of function
arguments (args), and result table (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
John Wiley & Sons.

See Also

test.welch, test.z, test.levene, cohens.d, ci.mean.diff, ci.mean

Examples

dat1 <- data.frame(group = c(1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2),
x = c(3, 1, 4, 2, 5, 3, 2, 3, 6, 6, 3, NA))

#--------------------------------------
One-Sample Design

Two-sided one-sample t-test
population mean = 3
test.t(dat1$x, mu = 3)

One-sided one-sample t-test

146 test.t

population mean = 3, population standard deviation = 1.2
test.t(dat1$x, mu = 3, alternative = "greater")

Two-sided one-sample t-test
population mean = 3, convert value 3 to NA
test.t(dat1$x, mu = 3, as.na = 3)

Two-sided one-sample t-test
population mean = 3, print Cohen's d
test.t(dat1$x, sigma = 1.2, mu = 3, effsize = TRUE)

Two-sided one-sample t-test
population mean = 3, print Cohen's d with small sample correction factor
test.t(dat1$x, sigma = 1.2, mu = 3, effsize = TRUE, correct = TRUE)

Two-sided one-sample t-test
population mean = 3,
do not print hypotheses and descriptive statistics
test.t(dat1$x, sigma = 1.2, mu = 3, hypo = FALSE, descript = FALSE)

Two-sided one-sample t-test
print descriptive statistics with 3 digits and p-value with 5 digits
test.t(dat1$x, mu = 3, digits = 3, p.digits = 5)

#--------------------------------------
Two-Sample Design

Two-sided two-sample t-test
test.t(x ~ group, data = dat1)

One-sided two-sample t-test
test.t(x ~ group, data = dat1, alternative = "greater")

Two-sided two-sample t-test
print Cohen's d with weighted pooled SD
test.t(x ~ group, data = dat1, effsize = TRUE)

Two-sided two-sample t-test
print Cohen's d with unweighted pooled SD
test.t(x ~ group, data = dat1, effsize = TRUE, weighted = FALSE)

Two-sided two-sample t-test
print Cohen's d with weighted pooled SD and
small sample correction factor
test.t(x ~ group, data = dat1, effsize = TRUE, correct = TRUE)

Two-sided two-sample t-test
print Cohen's d with SD of the reference group 1
test.t(x ~ group, data = dat1, effsize = TRUE,

ref = 1)

Two-sided two-sample t-test
print Cohen's d with weighted pooled SD and

test.t 147

small sample correction factor
test.t(x ~ group, data = dat1, effsize = TRUE,

correct = TRUE)

Two-sided two-sample t-test
do not print hypotheses and descriptive statistics,
test.t(x ~ group, data = dat1, descript = FALSE, hypo = FALSE)

Two-sided two-sample t-test
print descriptive statistics with 3 digits and p-value with 5 digits
test.t(x ~ group, data = dat1, digits = 3, p.digits = 5)

#-----------------

group1 <- c(3, 1, 4, 2, 5, 3, 6, 7)
group2 <- c(5, 2, 4, 3, 1)

Two-sided two-sample t-test
test.t(group1, group2)

#--------------------------------------
Paired-Sample Design

dat2 <- data.frame(pre = c(1, 3, 2, 5, 7),
post = c(2, 2, 1, 6, 8), stringsAsFactors = FALSE)

Two-sided paired-sample t-test
test.t(dat2$pre, dat2$post, paired = TRUE)

One-sided paired-sample t-test
test.t(dat2$pre, dat2$post, paired = TRUE,

alternative = "greater")

Two-sided paired-sample t-test
convert value 1 to NA
test.t(dat2$pre, dat2$post, as.na = 1, paired = TRUE)

Two-sided paired-sample t-test
print Cohen's d based on the standard deviation of the difference scores
test.t(dat2$pre, dat2$post, paired = TRUE, effsize = TRUE)

Two-sided paired-sample t-test
print Cohen's d based on the standard deviation of the difference scores
with small sample correction factor
test.t(dat2$pre, dat2$post, paired = TRUE, effsize = TRUE,

correct = TRUE)

Two-sided paired-sample t-test
print Cohen's d controlling for the correlation between measures
test.t(dat2$pre, dat2$post, paired = TRUE, effsize = TRUE,

weighted = FALSE)

Two-sided paired-sample t-test

148 test.welch

print Cohen's d controlling for the correlation between measures
with small sample correction factor
test.t(dat2$pre, dat2$post, paired = TRUE, effsize = TRUE,

weighted = FALSE, correct = TRUE)

Two-sided paired-sample t-test
print Cohen's d ignoring the correlation between measures
test.t(dat2$pre, dat2$post, paired = TRUE, effsize = TRUE,

weighted = FALSE, cor = FALSE)

Two-sided paired-sample t-test
do not print hypotheses and descriptive statistics
test.t(dat2$pre, dat2$post, paired = TRUE, hypo = FALSE, descript = FALSE)

Two-sided paired-sample t-test
population standard deviation of difference score = 1.2
print descriptive statistics with 3 digits and p-value with 5 digits
test.t(dat2$pre, dat2$post, paired = TRUE, digits = 3,

p.digits = 5)

test.welch Welch’s Test

Description

This function performs Welch’s two-sample t-test and Welch’s ANOVA.

Usage

test.welch(formula, data, alternative = c("two.sided", "less", "greater"),
conf.level = 0.95, hypo = TRUE, descript = TRUE, effsize = FALSE,
weighted = FALSE, ref = NULL, correct = FALSE, digits = 2,
p.digits = 4, as.na = NULL, check = TRUE, output = TRUE, ...)

Arguments

formula a formula of the form y ~ group where y is a numeric variable giving the data
values and group a numeric variable, character variable or factor with two or
more than two values or factor levels giving the corresponding groups.

data a matrix or data frame containing the variables in the formula formula.

alternative a character string specifying the alternative hypothesis, must be one of code"two.sided"
(default), "greater" or "less". Note that this argument is only used when con-
ducting Welch’s two-sample t-test.

conf.level a numeric value between 0 and 1 indicating the confidence level of the interval
for Cohen’s d. Note that this argument is only used when conducting Welch’s
two-sample t-test.

hypo logical: if TRUE, null and alternative hypothesis are shown on the console.

test.welch 149

descript logical: if TRUE, descriptive statistics are shown on the console.

effsize logical: if TRUE, effect size measure Cohen’s d for Welch’s two-sample t-test
(see cohens.d), η2 and ω2 for Welch’s ANOVA are shown on the console.

weighted logical: if TRUE, the weighted pooled standard deviation is used to compute
Cohen’s d.

ref a numeric value or character string indicating the reference group. The standard
deviation of the reference group is used to standardized the mean difference to
compute Cohen’s d.

correct logical: if TRUE, correction factor to remove positive bias in small samples is
used.

digits an integer value indicating the number of decimal places to be used for display-
ing descriptive statistics and confidence interval.

p.digits an integer value indicating the number of decimal places to be used for display-
ing the p-value.

as.na a numeric vector indicating user-defined missing values, i.e. these values are
converted to NA before conducting the analysis.

check logical: if TRUE, argument specification is checked.

output logical: if TRUE, output is shown on the console.

... further arguments to be passed to or from methods.

Details

Note that by default Welch’s two-sample t-test reports Cohen’s d based on the unweighted standard
deviation (i.e., weighted = FALSE) when requesting an effect size measure (i.e., effsize = TRUE)
following the recommendation by Delacre et al. (2021).

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, list with the input specified in x (data), specification of function
arguments (args), and result table(s) (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
John Wiley & Sons.

Delacre, M., Lakens, D., Ley, C., Liu, L., & Leys, C. (2021). Why Hedges’ g*s based on the non-
pooled standard deviation should be reported with Welch’s t-test. https://doi.org/10.31234/osf.io/tu6mp

See Also

test.t, test.z, test.levene, cohens.d, ci.mean.diff, ci.mean

150 test.welch

Examples

dat1 <- data.frame(group1 = c(1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2),
group2 = c(1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3),
x = c(3, 1, 4, 2, 5, 3, 2, 3, 6, 6, 3, NA))

#--------------------------------------
Two-Sample Design

Two-sided two-sample Welch-test
test.welch(x ~ group1, data = dat1)

One-sided two-sample Welch-test
test.welch(x ~ group1, data = dat1, alternative = "greater")

Two-sided two-sample Welch-test
print Cohen's d with weighted pooled SD
test.welch(x ~ group1, data = dat1, effsize = TRUE)

Two-sided two-sample Welch-test
print Cohen's d with unweighted pooled SD
test.welch(x ~ group1, data = dat1, effsize = TRUE, weighted = FALSE)

Two-sided two-sample Welch-test
print Cohen's d with weighted pooled SD and
small sample correction factor
test.welch(x ~ group1, data = dat1, effsize = TRUE, correct = TRUE)

Two-sided two-sample Welch-test
print Cohen's d with SD of the reference group 1
test.welch(x ~ group1, data = dat1, effsize = TRUE,

ref = 1)

Two-sided two-sample Welch-test
print Cohen's d with weighted pooled SD and
small sample correction factor
test.welch(x ~ group1, data = dat1, effsize = TRUE,

correct = TRUE)

Two-sided two-sample Welch-test
do not print hypotheses and descriptive statistics,
test.welch(x ~ group1, data = dat1, descript = FALSE, hypo = FALSE)

Two-sided two-sample Welch-test
print descriptive statistics with 3 digits and p-value with 5 digits
test.welch(x ~ group1, data = dat1, digits = 3, p.digits = 5)

#--------------------------------------
Multiple-Sample Design

Welch's ANOVA
test.welch(x ~ group2, data = dat1)

test.z 151

Welch's ANOVA
print eta-squared and omega-squared
test.welch(x ~ group2, data = dat1, effsize = TRUE)

Welch's ANOVA
do not print hypotheses and descriptive statistics,
test.welch(x ~ group2, data = dat1, descript = FALSE, hypo = FALSE)

test.z z-Test

Description

This function performs one-sample, two-sample, and paired-sample z-tests.

Usage

test.z(x, ...)

Default S3 method:
test.z(x, y = NULL, sigma = NULL, sigma2 = NULL, mu = 0,

paired = FALSE, alternative = c("two.sided", "less", "greater"),
hypo = TRUE, descript = TRUE, effsize = FALSE, digits = 2, p.digits = 4,
as.na = NULL, check = TRUE, output = TRUE, ...)

S3 method for class 'formula'
test.z(formula, data, sigma = NULL, sigma2 = NULL,

alternative = c("two.sided", "less", "greater"), hypo = TRUE,
descript = TRUE, effsize = FALSE, digits = 2, p.digits = 4,
as.na = NULL, check = TRUE, output = TRUE, ...)

Arguments

x a numeric vector of data values.

y a numeric vector of data values.

sigma a numeric vector indicating the population standard deviation(s). In case of two-
sample z-test, equal standard deviations are assumed when specifying one value
for the argument sigma; when specifying two values for the argument sigma,
unequal standard deviations are assumed. Note that either argument sigma or
argument sigma2 is specified.

sigma2 a numeric vector indicating the population variance(s). In case of two-sample
z-test, equal variances are assumed when specifying one value for the argument
sigma2; when specifying two values for the argument sigma, unequal variance
are assumed. Note that either argument sigma or argument sigma2 is specified.

mu a numeric value indicating the population mean under the null hypothesis. Note
that the argument mu is only used when computing a one-sample z-test.

152 test.z

paired logical: if TRUE, paired-sample z-test is computed.
alternative a character string specifying the alternative hypothesis, must be one of "two.sided"

(default), "greater" or "less".
hypo logical: if TRUE, null and alternative hypothesis are shown on the console.
descript logical: if TRUE, descriptive statistics are shown on the console.
effsize logical: if TRUE, effect size measure Cohen’s d is shown on the console.
digits an integer value indicating the number of decimal places to be used for display-

ing descriptive statistics and confidence interval.
p.digits an integer value indicating the number of decimal places to be used for display-

ing the p-value.
as.na a numeric vector indicating user-defined missing values, i.e. these values are

converted to NA before conducting the analysis.
check logical: if TRUE, argument specification is checked.
output logical: if TRUE, output is shown on the console.
formula in case of two sample z-test (i.e., paired = FALSE), a formula of the form y ~

group where group is a numeric variable, character variable or factor with two
values or factor levels giving the corresponding groups.

data a matrix or data frame containing the variables in the formula formula.
... further arguments to be passed to or from methods.

Details

Cohen’s d reported when argument effsize = TRUE is based on the population standard deviation
specified in sigma or the square root of the population variance specified in sigma2. In a one-sample
and paired-sample design, Cohen’s d is the mean of the difference scores divided by the population
standard deviation of the difference scores (i.e., equivalent to Cohen’s dz according to Lakens,
2013). In a two-sample design, Cohen’s d is the difference between means of the two groups of
observations divided by either the population standard deviation when assuming and specifying
equal standard deviations or the unweighted pooled population standard deviation when assuming
and specifying unequal standard deviations.

Value

Returns an object of class misty.object, which is a list with following entries: function call
(call), type of analysis type, list with the input specified in x (data), specification of function
arguments (args), and result table (result).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Lakens, D. (2013). Calculating and reporting effect sizes to facilitate cumulative science: A practi-
cal primer for t-tests and ANOVAs. Frontiers in Psychology, 4, 1-12. https://doi.org/10.3389/fpsyg.2013.00863

Rasch, D., Kubinger, K. D., & Yanagida, T. (2011). Statistics in psychology - Using R and SPSS.
John Wiley & Sons.

test.z 153

See Also

test.t, cohens.d, ci.mean.diff, ci.mean

Examples

dat1 <- data.frame(group = c(1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2),
x = c(3, 1, 4, 2, 5, 3, 2, 3, 6, 4, 3, NA))

#--------------------------------------
One-Sample Design

Two-sided one-sample z-test
population mean = 3, population standard deviation = 1.2
test.z(dat1$x, sigma = 1.2, mu = 3)

Two-sided one-sample z-test
population mean = 3, population variance = 1.44
test.z(dat1$x, sigma2 = 1.44, mu = 3)

One-sided one-sample z-test
population mean = 3, population standard deviation = 1.2
test.z(dat1$x, sigma = 1.2, mu = 3, alternative = "greater")

Two-sided one-sample z-test
population mean = 3, population standard deviation = 1.2
convert value 3 to NA
test.z(dat1$x, sigma = 1.2, mu = 3, as.na = 3)

Two-sided one-sample z-test
population mean = 3, population standard deviation = 1.2
print Cohen's d
test.z(dat1$x, sigma = 1.2, mu = 3, effsize = TRUE)

Two-sided one-sample z-test
population mean = 3, population standard deviation = 1.2
do not print hypotheses and descriptive statistics
test.z(dat1$x, sigma = 1.2, mu = 3, hypo = FALSE, descript = FALSE)

Two-sided one-sample z-test
population mean = 3, population standard deviation = 1.2
print descriptive statistics with 3 digits and p-value with 5 digits
test.z(dat1$x, sigma = 1.2, mu = 3, digits = 3, p.digits = 5)

#--------------------------------------
Two-Sample Design

Two-sided two-sample z-test
population standard deviation (SD) = 1.2, equal SD assumption
test.z(x ~ group, sigma = 1.2, data = dat1)

Two-sided two-sample z-test
population standard deviation (SD) = 1.2 and 1.5, unequal SD assumption

154 test.z

test.z(x ~ group, sigma = c(1.2, 1.5), data = dat1)

Two-sided two-sample z-test
population variance (Var) = 1.44 and 2.25, unequal Var assumption
test.z(x ~ group, sigma2 = c(1.44, 2.25), data = dat1)

One-sided two-sample z-test
population standard deviation (SD) = 1.2, equal SD assumption
test.z(x ~ group, sigma = 1.2, data = dat1, alternative = "greater")

Two-sided two-sample z-test
population standard deviation (SD) = 1.2, equal SD assumption
print Cohen's d
test.z(x ~ group, sigma = 1.2, data = dat1, effsize = TRUE)

Two-sided two-sample z-test
population standard deviation (SD) = 1.2, equal SD assumption
do not print hypotheses and descriptive statistics,
print Cohen's d
test.z(x ~ group, sigma = 1.2, data = dat1, descript = FALSE, hypo = FALSE)

Two-sided two-sample z-test
population mean = 3, population standard deviation = 1.2
print descriptive statistics with 3 digits and p-value with 5 digits
test.z(x ~ group, sigma = 1.2, data = dat1, digits = 3, p.digits = 5)

#-----------------

group1 <- c(3, 1, 4, 2, 5, 3, 6, 7)
group2 <- c(5, 2, 4, 3, 1)

Two-sided two-sample z-test
population standard deviation (SD) = 1.2, equal SD assumption
test.z(group1, group2, sigma = 1.2)

#--------------------------------------
Paired-Sample Design

dat2 <- data.frame(pre = c(1, 3, 2, 5, 7),
post = c(2, 2, 1, 6, 8), stringsAsFactors = FALSE)

Two-sided paired-sample z-test
population standard deviation of difference score = 1.2
test.z(dat2$pre, dat2$post, sigma = 1.2, paired = TRUE)

Two-sided paired-sample z-test
population variance of difference score = 1.44
test.z(dat2$pre, dat2$post, sigma2 = 1.44, paired = TRUE)

One-sided paired-sample z-test
population standard deviation of difference score = 1.2
test.z(dat2$pre, dat2$post, sigma = 1.2, paired = TRUE,

alternative = "greater")

write.mplus 155

Two-sided paired-sample z-test
population standard deviation of difference score = 1.2
convert value 1 to NA
test.z(dat2$pre, dat2$post, sigma = 1.2, as.na = 1, paired = TRUE)

Two-sided paired-sample z-test
population standard deviation of difference score = 1.2
print Cohen's d
test.z(dat2$pre, dat2$post, sigma = 1.2, paired = TRUE, effsize = TRUE)

Two-sided paired-sample z-test
population standard deviation of difference score = 1.2
do not print hypotheses and descriptive statistics
test.z(dat2$pre, dat2$post, sigma = 1.2, mu = 3, paired = TRUE,

hypo = FALSE, descript = FALSE)

Two-sided paired-sample z-test
population standard deviation of difference score = 1.2
print descriptive statistics with 3 digits and p-value with 5 digits
test.z(dat2$pre, dat2$post, sigma = 1.2, paired = TRUE,

digits = 3, p.digits = 5)

write.mplus Write Mplus Data File

Description

This function writes a matrix or data frame to a tab-delimited file without variable names, a Mplus
input template, and a text file with variable names. Note that only numeric variables are allowed,
i.e., non-numeric variables will be removed from the data set. Missing data will be coded as a single
numeric value.

Usage

write.mplus(x, file = "Mplus_Data.dat", input = TRUE, n.var = 8,
var = FALSE, na = -99, check = TRUE)

Arguments

x a matrix or data frame to be written to a tab-delimited file.

file a character string naming a file with or without the file extension ’.dat’, e.g.,
"Mplus_Data.dat" or "Mplus_Data".

input logical: if TRUE (default), Mplus input template is written in a text file named
according to the argumentfile with the extension _INPUT.inp.

n.var a numeric value indicating the number of variables in each line under NAMES ARE
in the the Mplus input template.

156 write.result

var logical: if TRUE, variable names are written in a text file named according to the
argumentfile with the extension _VARNAMES.txt.

na a numeric value or character string representing missing values (NA) in the data
set.

check logical: if TRUE, argument specification is checked.

Value

None.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

Muthen, L. K., & Muthen, B. O. (1998-2017). Mplus User’s Guide (8th ed.). Muthen & Muthen.

See Also

read.mplus, run.mplus

Examples

Not run:

Write Mplus Data File and a Mplus input template
write.mplus(mtcars)

Write Mplus Data File "mtcars.dat" and a Mplus input template "mtcars_INPUT.inp",
missing values coded with -999, 4 variables in each line under "NAMES ARE"
write variable names in a text file called "mtcars_VARNAMES.inp"
write.mplus(mtcars, file = "mtcars.dat", n.var = 4, var = TRUE, na = -999)

End(Not run)

write.result Write Results of a misty Object into an Excel file

Description

This function writes the results of a misty object (misty.object) into a Excel file.

Usage

write.result(x, file = "Results.xlsx")

write.result 157

Arguments

x misty object (misty.object) resulting from a misty function supported by the
write.result function (see ’Details’).

file a character string naming a file with or without file extension ’.xlsx’, e.g., "Results.xlsx"
or "Results".

Details

Currently the function supports result objects from the function cor.matrix, crosstab, freq,
item.alpha, item.alpha, item.cfa, item.omega, multilevel.cor, multilevel.descript, na.coverage,
na.descript, and na.pattern.

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

See Also

cor.matrix, crosstab, freq, item.alpha, item.cfa, item.omega, multilevel.cor, multilevel.descript,
na.coverage, na.descript, na.pattern

Examples

Not run:
#--------------------------------------
cor.matrix() function

result <- cor.matrix(mtcars, print = "all", output = FALSE)
write.result(result, "Correlation.xlsx")

#--------------------------------------
crosstab() function

result <- crosstab(mtcars[, c("carb", "gear")], print = "all", output = FALSE)
write.result(result, "Crosstab.xlsx")

#--------------------------------------
descript() function

result <- descript(mtcars, output = FALSE)
write.result(result, "Descript.xlsx")

#--------------------------------------
freq() function

result <- freq(mtcars, exclude = 99, output = FALSE)
write.result(result, "Freq.xlsx")

#--------------------------------------
item.alpha() function

158 write.result

result <- item.alpha(attitude, output = FALSE)
write.result(result, "Alpha.xlsx")

#--------------------------------------
item.cfa() function

Load data set "HolzingerSwineford1939" in the lavaan package
data("HolzingerSwineford1939", package = "lavaan")

result <- item.cfa(HolzingerSwineford1939[, c("x1", "x2", "x3")],
output = FALSE)

write.result(result, "CFA.xlsx")

#--------------------------------------
item.omega() function

result <- item.omega(attitude, output = FALSE)
write.result(result, "Omega.xlsx")

#--------------------------------------
multilevel.cor() function

Load data set "Demo.twolevel" in the lavaan package
data("Demo.twolevel", package = "lavaan")

result <- multilevel.cor(Demo.twolevel[, c("y1", "y2", "y3")],
cluster = Demo.twolevel$cluster, output = FALSE)

write.result(result, "Multilevel_Correlation.xlsx")

#--------------------------------------
multilevel.descript() function

Load data set "Demo.twolevel" in the lavaan package
data("Demo.twolevel", package = "lavaan")

result <- multilevel.descript(Demo.twolevel[, c("y1", "y2", "y3")],
cluster = Demo.twolevel$cluster, output = FALSE)

write.result(result, "Multilevel_Descript.xlsx")

#--------------------------------------
na.coverage() function

dat <- data.frame(x = c(1, NA, NA, 6, 3),
y = c(7, NA, 8, 9, NA),
z = c(2, NA, 3, NA, 5))

result <- na.coverage(dat, output = FALSE)
write.result(result, "NA_Coverage.xlsx")

#--------------------------------------
na.descript() function

dat <- data.frame(x1 = c(1, NA, 2, 5, 3, NA, 5, 2),

write.sav 159

x2 = c(4, 2, 5, 1, 5, 3, 4, 5),
x3 = c(NA, 3, 2, 4, 5, 6, NA, 2),
x4 = c(5, 6, 3, NA, NA, 4, 6, NA))

result <- na.descript(dat, table = TRUE, output = FALSE)
write.result(result, "NA_Descriptives.xlsx")

#--------------------------------------
na.pattern() function

dat <- data.frame(x = c(1, NA, NA, 6, 3),
y = c(7, NA, 8, 9, NA),
z = c(2, NA, 3, NA, 5))

result <- na.pattern(dat, output = FALSE)
write.result(result, "NA_Pattern.xlsx")

End(Not run)

write.sav Write SPSS File

Description

This function writes a data frame or matrix into a SPSS file by either using the write_sav() func-
tion in the haven package by Hadley Wickham and Evan Miller (2019) or the free software PSPP
(see: https://www.gnu.org/software/pspp/pspp.html).

Usage

write.sav(x, file = "SPSS_Data.sav", var.attr = NULL, pspp.path = NULL,
digits = 2, write.csv = FALSE, sep = c(";", ","), na = "",
write.sps = FALSE,check = TRUE)

Arguments

x a matrix or data frame to be written in SPSS, vectors are coerced to a data frame.

file a character string naming a file with or without file extension ’.sav’, e.g., "My_SPSS_Data.sav"
or "My_SPSS_Data".

var.attr a matrix or data frame with variable attributes used in the SPSS file, only ’vari-
able labels’ (column name label), ’value labels’ column name values, and
’user-missing values’ column name missing are supported (see ’Details’).

pspp.path a character string indicating the path where the PSPP folder is located on the
computer, e.g.C:/Program Files/PSPP/.

digits an integer value indicating the number of decimal places shown in the SPSS file
for non-integer variables.

write.csv logical: if TRUE, CSV file is written along with the SPSS file.

https://www.gnu.org/software/pspp/pspp.html

160 write.sav

sep a character string for specifying the CSV file, either ";" for the separator and
"." for the decimal point (default, i.e. equivalent to write.csv2) or "." for the
decimal point and "," for the separator (i.e. equivalent to write.csv), must be
one of both ";" (default) or ",".

na a character string for specifying missing values in the CSV file.

write.sps logical: if TRUE, SPSS syntax is written along with the SPSS file when using
PSPP.

check logical: if TRUE, variable attributes specified in the argument var.attr is checked.

Details

If arguments pspp.path is not specified (i.e., pspp.path = NULL), write_sav() function in the
haven is used. Otherwise the object x is written as CSV file, which is subsequently imported into
SPSS using the free software PSPP by executing a SPSS syntax written in R. Note that PSPP needs
to be installed on your computer when using the pspp.path argument.

A SPSS file with ’variable labels’, ’value labels’, and ’user-missing values’ is written by specifying
the var.attr argument. Note that the number of rows in the matrix or data frame specified in
var.attr needs to match with the number of columns in the data frame or matrix specified in x,
i.e., each row in var.attr represents the variable attributes of the corresponding variable in x. In
addition, column names of the matrix or data frame specified in var.attr needs to be labeled as
label for ’variable labels, values for ’value labels’, and missing for ’user-missing values’.

Labels for the values are defined in the column values of the matrix or data frame in var.attr
using the equal-sign (e.g., 0 = female) and are separated by a semicolon (e.g., 0 = female; 1 =
male).

User-missing values are defined in the column missing of the matrix or data frame in var.attr,
either specifying one user-missing value (e.g., -99) or more than one but up to three user-missing
values separated by a semicolon (e.g., -77; -99.

Note

Part of the function using PSPP was adapted from the write.pspp() function in the miceadds
package by Alexander Robitzsch, Simon Grund and Thorsten Henke (2019).

Author(s)

Takuya Yanagida <takuya.yanagida@univie.ac.at>

References

GNU Project (2018). GNU PSPP for GNU/Linux (Version 1.2.0). Boston, MA: Free Software
Foundation. urlhttps://www.gnu.org/software/pspp/

Wickham H., & Miller, E. (2019). haven: Import and Export ’SPSS’, ’Stata’ and ’SAS’ Files. R
package version 2.2.0. https://CRAN.R-project.org/package=haven

Robitzsch, A., Grund, S., & Henke, T. (2019). miceadds: Some additional multiple imputation func-
tions, especially for mice. R package version 3.4-17. https://CRAN.R-project.org/package=
miceadds

https://CRAN.R-project.org/package=haven
https://CRAN.R-project.org/package=miceadds
https://CRAN.R-project.org/package=miceadds

write.xlsx 161

See Also

read.sav

Examples

Not run:

dat <- data.frame(id = 1:5,
gender = c(NA, 0, 1, 1, 0),
age = c(16, 19, 17, NA, 16),
status = c(1, 2, 3, 1, 4),
score = c(511, 506, 497, 502, 491), stringsAsFactors = FALSE)

Write SPSS file using the haven package
write.sav(dat, file = "Dataframe_haven.sav")

Write SPSS file using PSPP,
write CSV file and SPSS syntax along with the SPSS file
write.sav(dat, file = "Dataframe_PSPP.sav", pspp.path = "C:/Program Files/PSPP",

write.csv = TRUE, write.sps = TRUE)

Specify variable attributes
Note that it is recommended to manually specify the variables attritbues in a CSV or
Excel file which is subsequently read into R
attr <- data.frame(# Variable names

var = c("id", "gender", "age", "status", "score"),
Variable labels
label = c("Identification number", "Gender", "Age in years",

"Migration background", "Achievement test score"),
Value labels
values = c("", "0 = female; 1 = male", "",

"1 = Austria; 2 = former Yugoslavia; 3 = Turkey; 4 = other",
""),

User-missing values
missing = c("", "-99", "-99", "-99", "-99"), stringsAsFactors = FALSE)

Write SPSS file with variable attributes using the haven package
write.sav(dat, file = "Dataframe_haven_Attr.sav", var.attr = attr)

Write SPSS with variable attributes using PSPP
write.sav(dat, file = "Dataframe_PSPP_Attr.sav", var.attr = attr,

pspp.path = "C:/Program Files/PSPP")

End(Not run)

write.xlsx Write Excel File

162 write.xlsx

Description

This function calls the write_xlsx() function in the writexl package by Jeroen Ooms to write an
Excel file (.xlsx).

Usage

write.xlsx(x, file = "Excel_Data.xlsx", col.names = TRUE, format = FALSE,
use.zip64 = FALSE, check = TRUE)

Arguments

x a matrix, data frame or (named) list of matrices or data frames that will be writ-
ten in the Excel file.

file a character string naming a file with or without file extension ’.xlsx’, e.g., "My_Excle.xlsx"
or "My_Excel".

col.names logical: if TRUE, column names are written at the top of the Excel sheet.

format logical: if TRUE, column names in the Excel file are centered and bold.

use.zip64 logical: if TRUE, zip64 to enable support for 4GB+ Excel files is used.

check logical: if TRUE, argument specification is checked.

Details

This function supports strings, numbers, booleans, and dates.

Note

The function was adapted from the write_xlsx() function in the writexl package by Jeroen Ooms
(2021).

Author(s)

Jeroen Ooms

References

Jeroen, O. (2021). writexl: Export Data Frames to Excel ’xlsx’ Format. R package version 1.4.0.
https://CRAN.R-project.org/package=writexl

See Also

read.xlsx

write.xlsx 163

Examples

Not run:

Write Excel file (.xlsx)
dat <- data.frame(id = 1:5,

gender = c(NA, 0, 1, 1, 0),
age = c(16, 19, 17, NA, 16),
status = c(1, 2, 3, 1, 4),
score = c(511, 506, 497, 502, 491))

write.xlsx(dat, file = "Excel.xlsx")

Write Excel file with multiple sheets (.xlsx)
write.xlsx(list(cars = cars, mtcars = mtcars), file = "Excel_Sheets.xlsx")

End(Not run)

Index

aov, 143
as.na, 3, 109, 112–115, 117, 118, 120

center, 5
chr.gsub, 7, 9, 10
chr.omit, 8, 8, 10
chr.trim, 8, 9, 9
ci.mean, 11, 15, 19, 22, 25, 28, 30, 55, 122,

145, 149, 153
ci.mean.diff, 12, 13, 19, 22, 25, 28, 30, 55,

122, 145, 149, 153
ci.median, 12, 15, 18, 22, 25, 28, 30, 55, 122
ci.prop, 12, 15, 19, 20, 25, 28, 30, 55, 122
ci.prop.diff, 19, 22, 23, 28, 30, 55, 122
ci.sd, 12, 15, 19, 22, 25, 27, 30, 55, 122
ci.var, 12, 15, 19, 22, 25, 28, 29, 55, 122
cluster.scores, 6, 31, 89, 93, 132
cohens.d, 33, 43, 45, 47, 49, 51, 66, 122, 144,

145, 149, 153
collin.diag, 39, 122
cor.cont, 36, 42, 45, 47, 49, 51, 66, 122
cor.cramer, 36, 43, 44, 47, 49, 51, 66, 122
cor.matrix, 36, 43, 45, 45, 49, 51, 66, 122,

157
cor.phi, 43, 45, 47, 48, 51, 66, 122
cor.poly, 43, 45, 49, 50, 122
cor.test, 46
crosstab, 51, 55, 68, 122, 157

descript, 12, 15, 19, 22, 25, 28, 30, 52, 53,
68, 122

df.duplicated, 56, 59, 61–63
df.merge, 57, 58, 61–63
df.rbind, 57, 59, 60, 62, 63
df.rename, 57, 59, 61, 61, 63
df.sort, 57, 59, 61, 62, 62, 122
df.unique, 57, 59, 61–63
df.unique (df.duplicated), 56
dummy.c, 6, 64

eta.sq, 36, 65, 122

freq, 52, 55, 67, 121, 122, 157

indirect, 69, 99, 101
item.alpha, 73, 81, 85, 87, 89, 122, 157
item.cfa, 75, 76, 85, 89, 157
item.omega, 75, 81, 83, 87, 89, 122, 157
item.reverse, 6, 75, 85, 86, 128
item.scores, 6, 32, 75, 81, 85, 87, 88

kurtosis, 90, 139

multilevel.cor, 47, 91, 96, 98, 107, 157
multilevel.descript, 32, 52, 55, 68, 93, 95,

98, 107, 122, 157
multilevel.icc, 32, 47, 93, 96, 97, 107
multilevel.indirect, 72, 96, 98, 107
multilevel.r2, 96, 101, 122

na.as, 4, 109, 112–115, 117, 118, 120
na.auxiliary, 4, 36, 47, 109, 111, 113–115,

117, 118, 120, 122
na.coverage, 4, 109, 112, 112, 114, 115, 117,

118, 120, 122, 157
na.descript, 4, 52, 55, 68, 109, 112, 113,

113, 115, 117, 118, 120, 122, 157
na.indicator, 4, 109, 112–114, 115, 117,

118, 120
na.pattern, 4, 109, 112–115, 116, 118, 120,

122, 157
na.prop, 4, 109, 112–115, 117, 117, 120
na.test, 4, 109, 112–115, 117, 118, 118

p.adjust, 46, 92
print.misty.object, 120

rbind, 60
read.mplus, 122, 124, 126, 156
read.sav, 123, 123, 126, 161
read.xlsx, 123, 124, 125, 162

164

INDEX 165

rec, 6, 87, 127
run.mplus, 123, 129, 156
rwg.lindell, 6, 131

size.cor, 47, 122, 133, 135, 137
size.mean, 122, 134, 134, 137
size.prop, 122, 134, 135, 136
skewness, 90, 138
std.coef, 139

t.test, 143
test.levene, 122, 142, 145, 149
test.t, 12, 121, 122, 143, 149, 153
test.welch, 121, 122, 145, 148
test.z, 12, 121, 122, 145, 149, 151

write.mplus, 123, 155
write.result, 47, 52, 68, 75, 85, 93, 96, 113,

114, 117, 156
write.sav, 124, 159
write.xlsx, 126, 161

	as.na
	center
	chr.gsub
	chr.omit
	chr.trim
	ci.mean
	ci.mean.diff
	ci.median
	ci.prop
	ci.prop.diff
	ci.sd
	ci.var
	cluster.scores
	cohens.d
	collin.diag
	cor.cont
	cor.cramer
	cor.matrix
	cor.phi
	cor.poly
	crosstab
	descript
	df.duplicated
	df.merge
	df.rbind
	df.rename
	df.sort
	dummy.c
	eta.sq
	freq
	indirect
	item.alpha
	item.cfa
	item.omega
	item.reverse
	item.scores
	kurtosis
	multilevel.cor
	multilevel.descript
	multilevel.icc
	multilevel.indirect
	multilevel.r2
	na.as
	na.auxiliary
	na.coverage
	na.descript
	na.indicator
	na.pattern
	na.prop
	na.test
	print.misty.object
	read.mplus
	read.sav
	read.xlsx
	rec
	run.mplus
	rwg.lindell
	size.cor
	size.mean
	size.prop
	skewness
	std.coef
	test.levene
	test.t
	test.welch
	test.z
	write.mplus
	write.result
	write.sav
	write.xlsx
	Index

